Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Sep;21(9):1164-1172.
doi: 10.1038/s41556-019-0383-5. Epub 2019 Sep 3.

Profiling chromatin states using single-cell itChIP-seq

Affiliations

Profiling chromatin states using single-cell itChIP-seq

Shanshan Ai et al. Nat Cell Biol. 2019 Sep.

Abstract

Single-cell measurement of chromatin states, including histone modifications and non-histone protein binding, remains challenging. Here, we present a low-cost, efficient, simultaneous indexing and tagmentation-based ChIP-seq (itChIP-seq) method, compatible with both low cellular input and single cells for profiling chromatin states. itChIP combines chromatin opening, simultaneous cellular indexing and chromatin tagmentation within a single tube, enabling the processing of samples from tens of single cells to, more commonly, thousands of single cells per assay. We demonstrate that single-cell itChIP-seq (sc-itChIP-seq) yields ~9,000 unique reads per cell. Using sc-itChIP-seq to profile H3K27ac, we sufficiently capture the earliest epigenetic priming event during the cell fate transition from naive to primed pluripotency, and reveal the basis for cell-type specific enhancer usage during the differentiation of bipotent cardiac progenitor cells into endothelial cells and cardiomyocytes. Our results demonstrate that itChIP is a widely applicable technology for single-cell chromatin profiling of epigenetically heterogeneous cell populations in many biological processes.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Rivera, C. M. & Ren, B. Mapping human epigenomes. Cell 155, 39–55 (2013). - PubMed - DOI
    1. Roh, T.-Y., Ngau, W. C., Cui, K., Landsman, D. & Zhao, K. High-resolution genome-wide mapping of histone modifications. Nat. Biotechnol. 22, 1013–1016 (2004). - PubMed - DOI
    1. Kharchenko, P. V., Tolstorukov, M. Y. & Park, P. J. Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat. Biotechnol. 26, 1351–1359 (2008). - PubMed - PMC - DOI
    1. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015). - PubMed - DOI
    1. Adli, M. & Bernstein, B. E. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq. Nat. Protoc. 6, 1656–1668 (2011). - PubMed - PMC - DOI

Publication types