Drude Polarizable Force Field Parametrization of Carboxylate and N-Acetyl Amine Carbohydrate Derivatives
- PMID: 31411469
- PMCID: PMC6852669
- DOI: 10.1021/acs.jctc.9b00327
Drude Polarizable Force Field Parametrization of Carboxylate and N-Acetyl Amine Carbohydrate Derivatives
Abstract
In this work, we report the development of Drude polarizable force field parameters for the carboxylate and N-acetyl amine derivatives, extending the functionality of the existing Drude polarizable carbohydrate force field. The force field parameters have been developed in a hierarchical manner, reproducing the quantum mechanical gas-phase properties of small model compounds representing the key functional group in the carbohydrate derivatives, including optimization of the electrostatic and bonded parameters. The optimized parameters were then used to generate the models for carboxylate and N-acetyl amine carbohydrate derivatives. The transferred parameters were further tested and optimized to reproduce crystal geometries and J-coupling data from nuclear magnetic resonance experiments. The parameter development resulted in the incorporation of d-glucuronate, l-iduronate, N-acetyl-d-glucosamine (GlcNAc), and N-acetyl-d-galactosamine (GalNAc) sugars into the Drude polarizable force field. The parameters developed in this study were then applied to study the conformational properties of glycosaminoglycan polymer hyaluronan, composed of d-glucuronate and N-acetyl-d-glucosamine, in aqueous solution. Upon comparing the results from the additive and polarizable simulations, it was found that the inclusion of polarization improved the description of the electrostatic interactions observed in hyaluronan, resulting in enhanced conformational flexibility. The developed Drude polarizable force field parameters in conjunction with the remainder of the Drude polarizable force field parameters can be used for future studies involving carbohydrates and their conjugates in complex, heterogeneous systems.
Figures
Similar articles
-
CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides.J Phys Chem B. 2015 Jun 25;119(25):7846-59. doi: 10.1021/acs.jpcb.5b01767. Epub 2015 Jun 9. J Phys Chem B. 2015. PMID: 26018564 Free PMC article.
-
Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator.J Chem Inf Model. 2018 May 29;58(5):993-1004. doi: 10.1021/acs.jcim.8b00132. Epub 2018 Apr 17. J Chem Inf Model. 2018. PMID: 29624370 Free PMC article.
-
Extension of the CHARMM Classical Drude Polarizable Force Field to N- and O-Linked Glycopeptides and Glycoproteins.J Phys Chem B. 2022 Sep 8;126(35):6642-6653. doi: 10.1021/acs.jpcb.2c04245. Epub 2022 Aug 25. J Phys Chem B. 2022. PMID: 36005290 Free PMC article.
-
CHARMM additive and polarizable force fields for biophysics and computer-aided drug design.Biochim Biophys Acta. 2015 May;1850(5):861-871. doi: 10.1016/j.bbagen.2014.08.004. Epub 2014 Aug 19. Biochim Biophys Acta. 2015. PMID: 25149274 Free PMC article. Review.
-
An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications.Chem Rev. 2016 May 11;116(9):4983-5013. doi: 10.1021/acs.chemrev.5b00505. Epub 2016 Jan 27. Chem Rev. 2016. PMID: 26815602 Free PMC article. Review.
Cited by
-
Solving Chemical Absorption Equilibria using Free Energy and Quantum Chemistry Calculations: Methodology, Limitations, and New Open-Source Software.J Chem Theory Comput. 2023 May 9;19(9):2616-2629. doi: 10.1021/acs.jctc.3c00144. Epub 2023 Apr 20. J Chem Theory Comput. 2023. PMID: 37078869 Free PMC article.
-
CHARMM at 45: Enhancements in Accessibility, Functionality, and Speed.J Phys Chem B. 2024 Oct 17;128(41):9976-10042. doi: 10.1021/acs.jpcb.4c04100. Epub 2024 Sep 20. J Phys Chem B. 2024. PMID: 39303207 Free PMC article. Review.
-
Protein-Ligand Binding Molecular Details Revealed by Terahertz Optical Kerr Spectroscopy: A Simulation Study.JACS Au. 2021 Sep 15;1(10):1788-1797. doi: 10.1021/jacsau.1c00356. eCollection 2021 Oct 25. JACS Au. 2021. PMID: 34723281 Free PMC article.
-
Developing and Benchmarking Sulfate and Sulfamate Force Field Parameters via Ab Initio Molecular Dynamics Simulations To Accurately Model Glycosaminoglycan Electrostatic Interactions.J Chem Inf Model. 2024 Sep 23;64(18):7122-7134. doi: 10.1021/acs.jcim.4c00981. Epub 2024 Sep 9. J Chem Inf Model. 2024. PMID: 39250601 Free PMC article.
-
Combining Experimental Isotherms, Minimalistic Simulations, and a Model to Understand and Predict Chemical Adsorption onto Montmorillonite Clays.ACS Omega. 2021 May 26;6(22):14090-14103. doi: 10.1021/acsomega.1c00481. eCollection 2021 Jun 8. ACS Omega. 2021. PMID: 34124432 Free PMC article.
References
-
- Kannagi R, Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr Opin Struct Biol 2002, 12 (5), 599–608. - PubMed
-
- Bucior I; Burger MM, Carbohydrate–carbohydrate interactions in cell recognition. Curr Opin Struct Biol 2004, 14 (5), 631–637. - PubMed
-
- Lasky LA, Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 1995, 64 (1), 113–39. - PubMed
-
- Weis WI; Drickamer K, Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem 1996, 65 (1), 441–73. - PubMed
-
- Lowe JB, Glycosylation, immunity, and autoimmunity. Cell 2001, 104 (6), 809–12. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources