Bridging Crystal Engineering and Drug Discovery by Utilizing Intermolecular Interactions and Molecular Shapes in Crystals
- PMID: 31385643
- DOI: 10.1002/anie.201906602
Bridging Crystal Engineering and Drug Discovery by Utilizing Intermolecular Interactions and Molecular Shapes in Crystals
Abstract
Most structure-based drug discovery methods utilize crystal structures of receptor proteins. Crystal engineering, on the other hand, utilizes the wealth of chemical information inherent in small-molecule crystal structures in the Cambridge Structural Database (CSD). We show that the interaction surfaces and shapes of molecules in experimentally determined small-molecule crystal structures can serve as effective tools in drug discovery. Our description of the shape and interaction propensities of molecules in their crystal structures can be used to screen them for specific binding compatibility with protein targets, as demonstrated through the high-throughput profiling of around 138 000 small-molecule structures in the CSD and a series of drug-protein crystal structures. Electron-density-based intermolecular boundary surfaces in small-molecule crystal structures and in target-protein pockets are utilized to identify potential ligand molecules from the CSD based on 3D shape and intermolecular interaction matching.
Keywords: crystal engineering; drug discovery; molecular recognition; noncovalent interactions; virtual screening.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
The use of small-molecule structures to complement protein-ligand crystal structures in drug discovery.Acta Crystallogr D Struct Biol. 2017 Mar 1;73(Pt 3):240-245. doi: 10.1107/S2059798317000675. Epub 2017 Feb 22. Acta Crystallogr D Struct Biol. 2017. PMID: 28291759 Free PMC article.
-
Using more than 801 296 small-molecule crystal structures to aid in protein structure refinement and analysis.Acta Crystallogr D Struct Biol. 2017 Mar 1;73(Pt 3):234-239. doi: 10.1107/S2059798316014352. Epub 2017 Feb 22. Acta Crystallogr D Struct Biol. 2017. PMID: 28291758 Free PMC article.
-
Life-science applications of the Cambridge Structural Database.Acta Crystallogr D Biol Crystallogr. 2002 Jun;58(Pt 6 No 1):879-88. doi: 10.1107/s090744490200358x. Epub 2002 May 29. Acta Crystallogr D Biol Crystallogr. 2002. PMID: 12037325
-
Validation of Protein-Ligand Crystal Structure Models: Small Molecule and Peptide Ligands.Methods Mol Biol. 2017;1607:611-625. doi: 10.1007/978-1-4939-7000-1_25. Methods Mol Biol. 2017. PMID: 28573591 Review.
-
Efficiency of hit generation and structural characterization in fragment-based ligand discovery.Curr Opin Chem Biol. 2011 Aug;15(4):482-8. doi: 10.1016/j.cbpa.2011.06.008. Epub 2011 Jul 1. Curr Opin Chem Biol. 2011. PMID: 21724447 Review.
Cited by
-
CrystalClear: an open, modular protocol for predicting molecular crystal growth from solution.Chem Sci. 2023 May 23;14(26):7192-7207. doi: 10.1039/d2sc06761g. eCollection 2023 Jul 5. Chem Sci. 2023. PMID: 37416706 Free PMC article.
-
The First Insight Into the Supramolecular System of D,L-α-Difluoromethylornithine: A New Antiviral Perspective.Front Chem. 2021 May 13;9:679776. doi: 10.3389/fchem.2021.679776. eCollection 2021. Front Chem. 2021. PMID: 34055746 Free PMC article.
-
A Proline-Based Tectons and Supramolecular Synthons for Drug Design 2.0: A Case Study of ACEI.Pharmaceuticals (Basel). 2020 Oct 24;13(11):338. doi: 10.3390/ph13110338. Pharmaceuticals (Basel). 2020. PMID: 33114370 Free PMC article.
-
Structural and Molecular Packing study of Three New Amidophosphoric Acid Esters and Assessment of Their Inhibiting Activity Against SARS-CoV-2 by Molecular Docking.ChemistrySelect. 2022 Aug 5;7(29):e202201504. doi: 10.1002/slct.202201504. Epub 2022 Aug 1. ChemistrySelect. 2022. PMID: 36247410 Free PMC article.
-
Electrostatic Potential Field Effects on Amine Macrocyclizations within Yoctoliter Spaces: Supramolecular Electron Withdrawing/Donating Groups.J Phys Chem B. 2021 Aug 19;125(32):9333-9340. doi: 10.1021/acs.jpcb.1c05238. Epub 2021 Aug 6. J Phys Chem B. 2021. PMID: 34355901 Free PMC article.
References
-
- E. Fischer, Ber. Dtsch. Chem. Ges. 1894, 27, 2985-2993.
-
- A. Lavecchia, C. Di Giovanni, Curr. Med. Chem. 2013, 20, 2839-2860.
-
- None
-
- A. Nicholls, G. B. McGaughey, R. P. Sheridan, A. C. Good, G. Warren, M. Mathieu, S. W. Muchmore, S. P. Brown, J. A. Grant, J. A. Haigh, N. Nevins, A. N. Jain, B. Kelley, J. Med. Chem. 2010, 53, 3862-3886;
-
- G. M. Sastry, S. L. Dixon, W. Sherman, J. Chem. Inf. Model. 2011, 51, 2455-2466;
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources