Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1986 Dec 15;42(1-3):75-90.
doi: 10.1016/0009-3084(86)90044-7.

Genetic control of glycolipid expression

Review

Genetic control of glycolipid expression

T Yamakawa et al. Chem Phys Lipids. .

Abstract

A polymorphic variation of sialic acid species of sialosyllactosylceramide was found in dog erythrocytes. The analysis of the glycolipids in the erythrocytes of the individual dogs in a family of a Japanese breed of dog, Shiba-Inu, showed that the expression of sialosyllactosylceramide containing N-glycolylneuraminic acid was an autosomal dominant trait over the expression of that containing N-acetylneuraminic acid. Polymorphic variations of major liver gangliosides were also found in various strains of inbred mice. The strains were classified into three groups; the first group possessed only II3 NeuGc-LacCer, the second group possessed II3NeuGc-GgOse3Cer in addition to II3NeuGc-LacCer and the third group possessed II3NeuGc-GgOse4Cer and II3NeuGc,IV3NeuGc-GgOse4Cer as well as the above two gangliosides. By subjecting mice of these three groups to genetic analysis, the strain of the first group (WHT/Ht mice) was demonstrated to be a recessive homozygote which had a single autosomal defective gene making it unable to express N-acetylgalactosaminyltransferase activity to produce II3NeuGc-GgOse3Cer. The strains of the second group (BALB/c and C57BL/10 mice) were also demonstrated to be recessive homozygotes which had a single autosomal defective gene making them unable to express high enough level of galactosyltransferase activity to produce II3NeuGc-GgOse4Cer. By the analysis of gangliosides and the enzyme activity of H-2 congenic mice and mice produced by a mating, this defective gene controlling the expression of II3NeuGc-GgOse4-Cer through the regulation of the transferase activity was demonstrated to be linked to H-2 complex on chromosome 17.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources