Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 25;9(1):6397.
doi: 10.1038/s41598-019-42673-1.

Barley yield formation under abiotic stress depends on the interplay between flowering time genes and environmental cues

Affiliations

Barley yield formation under abiotic stress depends on the interplay between flowering time genes and environmental cues

Mathias Wiegmann et al. Sci Rep. .

Abstract

Since the dawn of agriculture, crop yield has always been impaired through abiotic stresses. In a field trial across five locations worldwide, we tested three abiotic stresses, nitrogen deficiency, drought and salinity, using HEB-YIELD, a selected subset of the wild barley nested association mapping population HEB-25. We show that barley flowering time genes Ppd-H1, Sdw1, Vrn-H1 and Vrn-H3 exert pleiotropic effects on plant development and grain yield. Under field conditions, these effects are strongly influenced by environmental cues like day length and temperature. For example, in Al-Karak, Jordan, the day length-sensitive wild barley allele of Ppd-H1 was associated with an increase of grain yield by up to 30% compared to the insensitive elite barley allele. The observed yield increase is accompanied by pleiotropic effects of Ppd-H1 resulting in shorter life cycle, extended grain filling period and increased grain size. Our study indicates that the adequate timing of plant development is crucial to maximize yield formation under harsh environmental conditions. We provide evidence that wild barley alleles, introgressed into elite barley cultivars, can be utilized to support grain yield formation. The presented knowledge may be transferred to related crop species like wheat and rice securing the rising global food demand for cereals.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Global macroclimate map with information on the five experimental locations. The position of the five (1–5) test locations are indicated on a simplified map of the Köppen-Geiger climate classification system provided by LordToran “Clickable world map with climate classification”, https://en.wikipedia.org/wiki/World_map#/media/File:K%C3%B6ppen-vereinfacht.svg, copyright: CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0/). General information about the test locations are given in the table on the lower left-hand side including the nearest town, country, stress treatment and the years of field trials. Insets next to map positions depicts long-term climate information for each test location. The average monthly precipitation in millimeters (blue bars), the average monthly temperature in degrees Celsius (red line) and the course of the day length during the year in hours (yellow line) are displayed. In addition, the sowing and harvesting dates are indicated with empty and filled circles, respectively. The Adelaide inset on the right-hand side serves as a legend for the insets.
Figure 2
Figure 2
Box-Whisker plots illustrating HEB-YIELD trait variation per location and treatment. Trait names and trait units are indicated in the grey rectangle above each subplot. Trait abbreviations are listed in Supplementary Table S3. The locations Dundee (DUN), Halle (HAL), Al-Karak (ALK), Dubai (DUB) and Adelaide (ADE) are indicated with blue, grey, green, red and yellow box-whiskers, respectively, and, in addition, at the bottom of the plot. Empty and filled boxes refer to control and stress treatments, respectively. Significant differences between treatments are indicated with red asterisks above boxes with *P < 0.05, **P < 0.01 and ***P < 0.001. The relative increase/decrease (in %) of the stress treatment compared to the control treatment is given below the asterisks.
Figure 3
Figure 3
Estimates of Ppd-H1 wild allele effects on plant developmental and yield-related traits. The trait names are given in the grey rectangles above each subplot and at the bottom where, in addition, the units of the traits are indicated. Trait abbreviations are listed in Supplementary Table S3. The color of the bars represents the location, blue for Dundee, grey for Halle, green for Al-Karak, red for Dubai and yellow for Adelaide. Ppd-H1 wild allele effects under control and stress treatments are depicted with a bright blue (top) and a bright red background (bottom), respectively. Statistically significant wild allele effects are indicated by red asterisks above or below the bars with *P < 0.05, **P < 0.01, ***P < 0.001. The height of the bars indicates the size of the Ppd-H1 wild allele effect, obtained by calculating the difference between the mean performances of HEB-YIELD lines carrying two wild alleles versus two elite alleles.
Figure 4
Figure 4
Estimates of Sdw1 wild allele effects on plant developmental and yield-related traits. The trait names are given in the grey rectangles above each subplot and at the bottom where, in addition, the units of the traits are indicated. Trait abbreviations are listed in Supplementary Table S3. The color of the bars represents the location, blue for Dundee, grey for Halle, green for Al-Karak, red for Dubai and yellow for Adelaide. Sdw1 wild allele effects under control and stress treatments are depicted with a bright blue (top) and a bright red background (bottom), respectively. Statistically significant wild allele effects are indicated by red asterisks above or below the bars with *P < 0.05, **P < 0.01 or ***P < 0.001. The height of the bars indicates the size of the Sdw1 wild allele effect, obtained by calculating the difference between the mean performances of HEB-YIELD lines carrying two wild alleles versus two elite alleles.
Figure 5
Figure 5
Regression of grain yield on flowering in Al-Karak. The yield levels of the 48 HEB-YIELD lines plus checks are depicted as a function of flowering time, separately for control (blue labels) and stress (red labels) treatments. The yield level of the local check cultivar ‘Rum’ is indicated by a dashed red line. On top of each subplot the linear regression equation, the Pearson’s correlation coefficient (r) and the coefficient of determination (r2) are indicated.

Similar articles

Cited by

References

    1. Godfray HCJ, et al. Food security: the challenge of feeding 9 billion people. Science. 2010;327:812–818. doi: 10.1126/science.1185383. - DOI - PubMed
    1. Powell N, Ji X, Ravash R, Edlington J, Dolferus R. Yield stability for cereals in a changing climate. Functional Plant Biol. 2013;39:539. doi: 10.1071/FP12078. - DOI - PubMed
    1. Samson J, Berteaux D, McGill BJ, Humphries MM. Geographic disparities and moral hazards in the predicted impacts of climate change on human populations. Global Ecology and Biogeography. 2011;20:532–544. doi: 10.1111/j.1466-8238.2010.00632.x. - DOI
    1. Field, C. B. et al. Detection and attribution of observed impacts. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 2014.
    1. Zhou, M. X. In Genetics and Improvement of Barley Malt Quality, edited by G. Zhang & C. Li (Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg), pp. 1–17 (2010).

Publication types