Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Sep:128:32-38.
doi: 10.1016/j.neuint.2019.04.003. Epub 2019 Apr 12.

Role of the BDNF-TrkB pathway in KCC2 regulation and rehabilitation following neuronal injury: A mini review

Affiliations
Review

Role of the BDNF-TrkB pathway in KCC2 regulation and rehabilitation following neuronal injury: A mini review

Sachiko Lee-Hotta et al. Neurochem Int. 2019 Sep.

Abstract

In most mature neurons, low levels of intracellular Cl- concentrations ([Cl-]i) are maintained by channels and transporters, particularly the K+-Cl- cotransporter 2 (KCC2), which is the only Cl- extruder in most neurons. Recent studies have implicated KCC2 expression in the molecular mechanisms underlying neuronal disorders, such as spasticity, epilepsy and neuropathic pain. Alterations in KCC2 expression have been associated with brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TrkB). The present review summarizes recent progress regarding the roles of Cl- regulators in immature and mature neurons. Moreover, we focus on the role of KCC2 regulation via the BDNF-TrkB pathway in spinal cord injury and rehabilitation, as prior studies have shown that the BDNF-TrkB pathway can affect both the pathological development and functional amelioration of spinal cord injuries. Evidence suggests that rehabilitation using active exercise and mechanical stimulation can attenuate spasticity and neuropathic pain in animal models, likely due to the upregulation of KCC2 expression via the BDNF-TrkB pathway. Moreover, research suggests that such rehabilitation efforts may recover KCC2 expression without the use of exogenous BDNF.

Keywords: BDNF-TrkB pathway; KCC2; Spasticity; Spinal cord injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms