Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May;14(3):188-193.
doi: 10.1097/COH.0000000000000535.

Review: HIV-1 phylogeny during suppressive antiretroviral therapy

Affiliations
Review

Review: HIV-1 phylogeny during suppressive antiretroviral therapy

Michael J Bale et al. Curr Opin HIV AIDS. 2019 May.

Abstract

Purpose of review: Studies of HIV-1 genetic diversity can provide clues on the effect of antiretroviral therapy (ART) on viral replication, the mechanisms for viral persistence, and the efficacy of new interventions. This article reviews methods for interrogating intrahost HIV-1 diversity, addresses the ongoing debate regarding HIV-1 compartmentalization and replication during ART, and summarizes recent findings on the effects of curative strategies on HIV-1 populations.

Recent findings: HIV-1 replication in the blood is virtually halted upon the initiation of ART. However, proliferation of cells infected prior to ART provides a self-renewing reservoir for infection during ART. Current evidence supports that proliferation of infected cells is a mechanism for HIV-1 persistence in both the blood and the tissues. However, more studies are required to determine if tissue sanctuaries exist that may also allow viral replication during ART. Recent studies investigating potential curative interventions show little effect on the genetic landscape of HIV-1 infection and highlight the need to develop strategies targeting the proliferation of infected cells.

Summary: Using phylogeny to characterize HIV-1 genetic diversity and evolution during ART has demonstrated a lack of viral replication, the proliferation of infected cells, and provides one metric to measure the effect of new interventions aimed at achieving a functional cure for HIV-1.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest Statement

MJB and MFK have no conflicts of interest to declare. The laboratories of MJB and MFK are funded by intramural NIH funding and the Office of AIDS Research.

Similar articles

Cited by

References

    1. Batorsky R, Kearney MF, Palmer SE, Maldarelli F, Rouzine IM, Coffin JM. Estimate of effective recombination rate and average selection coefficient for HIV in chronic infection. Proc Natl Acad Sci U S A. 2011;108(14):5661–6. - PMC - PubMed
    1. Hu WS, Hughes SH. HIV-1 reverse transcription. Cold Spring Harbor perspectives in medicine. 2012;2(10). - PMC - PubMed
    1. Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB, Capoferri AA, et al. Defective proviruses rapidly accumulate during acute HIV-1 infection. Nat Med. 2016;22(9):1043–9. - PMC - PubMed
    1. Hosmane NN, Kwon KJ, Bruner KM, Capoferri AA, Beg S, Rosenbloom DI, et al. Proliferation of latently infected CD4+ T cells carrying replication-competent HIV-1: Potential role in latent reservoir dynamics. J Exp Med. 2017;214(4):959–72.

      * Hosmane, et al. describe the replication-competent reservoir as largely clonal via sequencing of supernatants from positive QVOA wells.

    1. Rosenbloom DIS, Hill AL, Laskey SB, Siliciano RF. Re-evaluating evolution in the HIV reservoir. Nature. 2017;551(7681):E6–E9. - PMC - PubMed

Publication types

Substances