Technological advances in maize breeding: past, present and future
- PMID: 30798332
- DOI: 10.1007/s00122-019-03306-3
Technological advances in maize breeding: past, present and future
Abstract
Maize has for many decades been both one of the most important crops worldwide and one of the primary genetic model organisms. More recently, maize breeding has been impacted by rapid technological advances in sequencing and genotyping technology, transformation including genome editing, doubled haploid technology, parallelled by progress in data sciences and the development of novel breeding approaches utilizing genomic information. Herein, we report on past, current and future developments relevant for maize breeding with regard to (1) genome analysis, (2) germplasm diversity characterization and utilization, (3) manipulation of genetic diversity by transformation and genome editing, (4) inbred line development and hybrid seed production, (5) understanding and prediction of hybrid performance, (6) breeding methodology and (7) synthesis of opportunities and challenges for future maize breeding.
Similar articles
-
Maize In Planta Haploid Inducer Lines: A Cornerstone for Doubled Haploid Technology.Methods Mol Biol. 2021;2288:25-48. doi: 10.1007/978-1-0716-1335-1_2. Methods Mol Biol. 2021. PMID: 34270003 Review.
-
The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement.Plant Commun. 2019 Nov 27;1(1):100010. doi: 10.1016/j.xplc.2019.100010. eCollection 2020 Jan 13. Plant Commun. 2019. PMID: 33404535 Free PMC article. Review.
-
Development of a Haploid-Inducer Mediated Genome Editing System for Accelerating Maize Breeding.Mol Plant. 2019 Apr 1;12(4):597-602. doi: 10.1016/j.molp.2019.03.006. Epub 2019 Mar 19. Mol Plant. 2019. PMID: 30902686
-
Diversity in global maize germplasm: characterization and utilization.J Biosci. 2012 Nov;37(5):843-55. doi: 10.1007/s12038-012-9227-1. J Biosci. 2012. PMID: 23107920 Review.
-
Major locus for spontaneous haploid genome doubling detected by a case-control GWAS in exotic maize germplasm.Theor Appl Genet. 2021 May;134(5):1423-1434. doi: 10.1007/s00122-021-03780-8. Epub 2021 Feb 5. Theor Appl Genet. 2021. PMID: 33543310
Cited by
-
Enhancing Maize Transformation and Targeted Mutagenesis through the Assistance of Non-Integrating Wus2 Vector.Plants (Basel). 2023 Jul 28;12(15):2799. doi: 10.3390/plants12152799. Plants (Basel). 2023. PMID: 37570953 Free PMC article.
-
CRISPR-Cas technology in corn: a new key to unlock genetic knowledge and create novel products.Mol Breed. 2021 Feb 1;41(2):11. doi: 10.1007/s11032-021-01200-9. eCollection 2021 Feb. Mol Breed. 2021. PMID: 37309473 Free PMC article.
-
Leaf Proteomic Analysis in Seedlings of Two Maize Landraces with Different Tolerance to Boron Toxicity.Plants (Basel). 2023 Jun 15;12(12):2322. doi: 10.3390/plants12122322. Plants (Basel). 2023. PMID: 37375947 Free PMC article.
-
Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments.Theor Appl Genet. 2021 Jun;134(6):1729-1752. doi: 10.1007/s00122-021-03773-7. Epub 2021 Feb 16. Theor Appl Genet. 2021. PMID: 33594449 Free PMC article. Review.
-
Genome editing in maize: Toward improving complex traits in a global crop.Genet Mol Biol. 2023 Mar 3;46(1 Suppl 1):e20220217. doi: 10.1590/1678-4685-GMB-2022-0217. eCollection 2023. Genet Mol Biol. 2023. PMID: 36880696 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous