Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jan 4:9:1515.
doi: 10.3389/fphar.2018.01515. eCollection 2018.

The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins

Affiliations
Review

The Potential of Isoprenoids in Adjuvant Cancer Therapy to Reduce Adverse Effects of Statins

Huanbiao Mo et al. Front Pharmacol. .

Abstract

The mevalonate pathway provides sterols for membrane structure and nonsterol intermediates for the post-translational modification and membrane anchorage of growth-related proteins, including the Ras, Rac, and Rho GTPase family. Mevalonate-derived products are also essential for the Hedgehog pathway, steroid hormone signaling, and the nuclear localization of Yes-associated protein and transcriptional co-activator with PDZ-binding motif, all of which playing roles in tumorigenesis and cancer stem cell function. The phosphatidylinositol-4,5-bisphosphate 3-kinase-AKT-mammalian target of rapamycin complex 1 pathway, p53 with gain-of-function mutation, and oncoprotein MYC upregulate the mevalonate pathway, whereas adenosine monophosphate-activated protein kinase and tumor suppressor protein RB are the downregulators. The rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), is under a multivalent regulation. Sterol regulatory element binding protein 2 mediates the sterol-controlled transcriptional downregulation of HMGCR. UbiA prenyltransferase domain-containing protein-1 regulates the ubiquitination and proteasome-mediated degradation of HMGCR, which is accelerated by 24, 25-dihydrolanosterol and the diterpene geranylgeraniol. Statins, competitive inhibitors of HMGCR, deplete cells of mevalonate-derived intermediates and consequently inhibit cell proliferation and induce apoptosis. Clinical application of statins is marred by dose-limiting toxicities and mixed outcomes on cancer risk, survival and mortality, partially resulting from the statin-mediated compensatory upregulation of HMGCR and indiscriminate inhibition of HMGCR in normal and tumor cells. Tumor HMGCR is resistant to the sterol-mediated transcriptional control; consequently, HMGCR is upregulated in cancers derived from adrenal gland, blood and lymph, brain, breast, colon, connective tissue, embryo, esophagus, liver, lung, ovary, pancreas, prostate, skin, and stomach. Nevertheless, tumor HMGCR remains sensitive to isoprenoid-mediated degradation. Isoprenoids including monoterpenes (carvacrol, L-carvone, geraniol, perillyl alcohol), sesquiterpenes (cacalol, farnesol, β-ionone), diterpene (geranylgeranyl acetone), "mixed" isoprenoids (tocotrienols), and their derivatives suppress the growth of tumor cells with little impact on non-malignant cells. In cancer cells derived from breast, colon, liver, mesothelium, prostate, pancreas, and skin, statins and isoprenoids, including tocotrienols, geraniol, limonene, β-ionone and perillyl alcohol, synergistically suppress cell proliferation and associated signaling pathways. A blend of dietary lovastatin and δ-tocotrienol, each at no-effect doses, suppress the growth of implanted murine B16 melanomas in C57BL6 mice. Isoprenoids have potential as adjuvant agents to reduce the toxicities of statins in cancer prevention or therapy.

Keywords: HMG CoA reductase; SREBP; cancer; isoprenoids; mevalonate; statin; synergy.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The regulation of the mevalonate pathway and the role of mevalonate-derived metabolites in cell proliferation. When cellular level of sterol is low, Insig dissociates from the SREBP-SCAP complex, allowing the latter to move to the Golgi apparatus. Following proteolytic cleavage of SREBP, its basic helix-loop-helix fragment enters the nucleus, binds to the SRE domain of target genes, and initiates the transcription and synthesis of a number of enzymes in the mevalonate pathway, including its rate-limiting enzyme, HMGCR. The activated mevalonate pathway produces sterols and nonsterols, including FPP and GGPP for protein prenylation and cell proliferation. Sterols block the transport of the SREBP-SCAP complex to the Golgi apparatus and induce the binding of HMGCR to Insig, leading to the ubiquitination and degradation of HMGCR. Exogenous geranylgeraniol is phosphorylated and converted to GGPP, which induces the dissociation of UBIAD1 from HMGCR and facilitates the degradation of HMGCR. The statins competitively inhibit HMGCR. Consequently, the lack of sterols and nonsterols results in a compensatory upregulation of HMGCR. Tocotrienols and potentially other isoprenoids block the processing and nuclear localization of SREBP and enhance the ubiquitination and degradation of HMGCR. HMGCR is upregulated in tumors but remains sensitive to isoprenoid-mediated downregulation. Synergistic impact of isoprenoids and statins on tumor HMGCR may offer a novel approach in enhancing the efficacy of statins with reduced toxicity.
Figure 2
Figure 2
Structures of representative isoprenoids that impact tumors or potentiate the statin-mediated tumor suppression. Differing from the monoterpenes (carvacrol, carvone, perillyl alcohol, geraniol), sesquiterpenes (cacalol, farnesol, β-ionone), and diterpene (geranylgeranyl acetone), the tocotrienols are “mixed” isoprenoids with only part of their structure derived from the mevalonate pathway. The number and location of methyl group (R1 and R2) on the chromanol ring vary among the members (α, β, γ, and δ) of tocotrienols.

Similar articles

Cited by

References

    1. Abate M., Laezza C., Pisanti S., Torelli G., Seneca V., Catapano G., et al. . (2017). Deregulated expression and activity of Farnesyl Diphosphate Synthase (FDPS) in Glioblastoma. Sci. Rep. 7:14123. 10.1038/s41598-017-14495-6 - DOI - PMC - PubMed
    1. Abdullah M. I., Abed M. N., Richardson A. (2017). Inhibition of the mevalonate pathway augments the activity of pitavastatin against ovarian cancer cells. Sci. Rep. 7:8090. 10.1038/s41598-017-08649-9 - DOI - PMC - PubMed
    1. Adany I., Yazlovitskaya E. M., Haug J. S., Voziyan P. A., Melnykovych G. (1994). Differences in sensitivity to farnesol toxicity between neoplastically- and non-neoplastically-derived cells in culture. Cancer Lett. 79, 175–179. 10.1016/0304-3835(94)90257-7 - DOI - PubMed
    1. Ahmadi Y., Ghorbanihaghjo A., Argani H. (2017). The balance between induction and inhibition of mevalonate pathway regulates cancer suppression by statins: a review of molecular mechanisms. Chem. Biol. Interact. 273, 273–285. 10.1016/j.cbi.2017.06.026 - DOI - PubMed
    1. Alayoubi A. Y., Anderson J. F., Satyanarayanajois S. D., Sylvester P. W., Nazzal S. (2012). Concurrent delivery of tocotrienols and simvastatin by lipid nanoemulsions potentiates their antitumor activity against human mammary adenocarcenoma cells. Eur. J. Pharm. Sci. 48, 385–392. 10.1016/j.ejps.2012.12.011 - DOI - PubMed