Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 5:846:49-62.
doi: 10.1016/j.ejphar.2019.01.018. Epub 2019 Jan 15.

Contributory role of microRNAs in anti-cancer effects of small molecule inhibitor of telomerase (BIBR1532) on acute promyelocytic leukemia cell line

Affiliations

Contributory role of microRNAs in anti-cancer effects of small molecule inhibitor of telomerase (BIBR1532) on acute promyelocytic leukemia cell line

Atieh Pourbagheri-Sigaroodi et al. Eur J Pharmacol. .

Abstract

Telomerase-mediated immortalization and proliferation of tumor cells is a promising anti-cancer treatment strategy and development of potent telomerase inhibitors is believed to open new window of treatments in human malignancies. In the present study, we found that BIBR1532, a small molecule inhibitor of human telomerase, exerted cytotoxic effects on a panel of human cancer cells spanning from solid tumors to hematologic malignancies; however, as compared with solid tumors, leukemic cells were more sensitive to this inhibitor. This was independent of molecular status of p53 in the leukemic cells. The results of a miRNA PCR array revealed that BIBR1532-induced cytotoxic effects in NB4, the most sensitive cell line, was coupled with alteration in a substantial number of cancer-related miRNAs. Interestingly, most of these miRNAs were found to act as tumor suppressors with validated targets in cell cycle or nuclear factor (NF)-κB-mediated apoptosis. In accordance with a bioinformatics analysis, our experimental studies showed that BIBR1532-induced apoptosis is mediated, at least partly, by inhibition of NF-κB. Moreover, we found that the alteration in the expression of miRNAs was coupled with the alteration in the cell cycle progression. To sum up with, a straightforward interpretation of our results is that telomerase inhibition using BIBR1532 not only induced CDKN1A-mediated G1 arrest in NB4, but also resulted in a caspase-3-dependent apoptotic cell death mostly through suppression of NF-κB axis.

Keywords: BIBR1532; Leukemia; MicroRNA; NF-κB; Telomerase.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms