Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2019 Feb;51(2):245-257.
doi: 10.1038/s41588-018-0309-3. Epub 2019 Jan 14.

Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences

Richard Karlsson Linnér  1   2   3 Pietro Biroli  4 Edward Kong  5 S Fleur W Meddens  6   7   8 Robbee Wedow  9   10   11   12 Mark Alan Fontana  13   14 Maël Lebreton  15   16 Stephen P Tino  17 Abdel Abdellaoui  18 Anke R Hammerschlag  6 Michel G Nivard  18 Aysu Okbay  6   8 Cornelius A Rietveld  7   19   20 Pascal N Timshel  21   22 Maciej Trzaskowski  23 Ronald de Vlaming  6   7   8 Christian L Zünd  4 Yanchun Bao  24 Laura Buzdugan  25   4 Ann H Caplin  26 Chia-Yen Chen  9   11   27 Peter Eibich  28   29   30 Pierre Fontanillas  31 Juan R Gonzalez  32   33   34 Peter K Joshi  35 Ville Karhunen  36 Aaron Kleinman  31 Remy Z Levin  37 Christina M Lill  38 Gerardus A Meddens  39 Gerard Muntané  40   41   42 Sandra Sanchez-Roige  43 Frank J van Rooij  20 Erdogan Taskesen  6 Yang Wu  23 Futao Zhang  23 23and Me Research TeameQTLgen ConsortiumInternational Cannabis ConsortiumSocial Science Genetic Association ConsortiumAdam Auton  31 Jason D Boardman  44   45   46 David W Clark  35 Andrew Conlin  47 Conor C Dolan  18 Urs Fischbacher  48   49 Patrick J F Groenen  7   50 Kathleen Mullan Harris  51   52 Gregor Hasler  53 Albert Hofman  10   20 Mohammad A Ikram  20 Sonia Jain  54 Robert Karlsson  55 Ronald C Kessler  56 Maarten Kooyman  57 James MacKillop  58   59 Minna Männikkö  36 Carlos Morcillo-Suarez  40 Matthew B McQueen  60 Klaus M Schmidt  61 Melissa C Smart  24 Matthias Sutter  62   63   64 A Roy Thurik  7   65 André G Uitterlinden  66 Jon White  67 Harriet de Wit  68 Jian Yang  23   69 Lars Bertram  38   70   71 Dorret I Boomsma  18 Tõnu Esko  72 Ernst Fehr  4 David A Hinds  31 Magnus Johannesson  73 Meena Kumari  24 David Laibson  5 Patrik K E Magnusson  55 Michelle N Meyer  74 Arcadi Navarro  40   75   76 Abraham A Palmer  43   77 Tune H Pers  21   22 Danielle Posthuma  6   78 Daniel Schunk  79 Murray B Stein  43   54 Rauli Svento  47 Henning Tiemeier  20 Paul R H J Timmers  35 Patrick Turley  9   11   80 Robert J Ursano  81 Gert G Wagner  29   82 James F Wilson  35   83 Jacob Gratten  23   84 James J Lee  85 David Cesarini  86 Daniel J Benjamin  80   87   88 Philipp D Koellinger  6   8   89 Jonathan P Beauchamp  90
Collaborators, Affiliations
Meta-Analysis

Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences

Richard Karlsson Linnér et al. Nat Genet. 2019 Feb.

Abstract

Humans vary substantially in their willingness to take risks. In a combined sample of over 1 million individuals, we conducted genome-wide association studies (GWAS) of general risk tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual domains. Across all GWAS, we identified hundreds of associated loci, including 99 loci associated with general risk tolerance. We report evidence of substantial shared genetic influences across risk tolerance and the risky behaviors: 46 of the 99 general risk tolerance loci contain a lead SNP for at least one of our other GWAS, and general risk tolerance is genetically correlated ([Formula: see text] ~ 0.25 to 0.50) with a range of risky behaviors. Bioinformatics analyses imply that genes near SNPs associated with general risk tolerance are highly expressed in brain tissues and point to a role for glutamatergic and GABAergic neurotransmission. We found no evidence of enrichment for genes previously hypothesized to relate to risk tolerance.

PubMed Disclaimer

Figures

Figure 1 |
Figure 1 |. Manhattan plots.
In all panels, the x-axis is chromosomal position; the y-axis is the GWAS P value on a −log10 scale (based on a two-tailed z-test); each lead SNP is marked by a red “×”; each conditional association is marked by a red “o”; and each SNP that is both a lead SNP and a conditional association is marked by a red “⊗”. a, Manhattan plots for the discovery GWAS of general risk tolerance (n = 939,908). b, Local Manhattan plots of a long-range LD region on chromosome 3 and a candidate inversion on chromosome 18 that contain lead SNPs for all seven of our GWAS. The gray background marks the locations of long-range LD or candidate inversion regions. c, Local Manhattan plots of the areas around the 15 most commonly tested candidate genes in the prior literature on the genetics of risk tolerance. Each local plot shows all SNPs within 500 kb of the gene’s borders that are in weak LD (r2 > 0.1) with a SNP in the gene. The 15 plots are concatenated and shown together in the panel, divided by the black vertical lines. The 15 genes are not particularly strongly associated with general risk tolerance or the risky behaviors, as can be seen by comparing the results within each row across panels b and c (the three rows correspond to the GWAS of general risk tolerance, adventurousness (n = 557,923), and the first PC of the four risky behaviors (n = 315,894)).
Figure 2 |
Figure 2 |. Genetic correlations with general risk tolerance.
The genetic correlations were estimated using bivariate LD Score (LDSC) regression. Error bars show 95% confidence intervals. For the supplementary phenotypes and the additional risky behaviors, green bars represent significant estimates with the expected signs, where higher risk tolerance is associated with riskier behavior. For the other phenotypes, blue bars represent significant estimates. Light green and light blue bars represent genetic correlations that are statistically significant at the 5% level, and dark green and dark blue bars represent correlations that are statistically significant after Bonferroni correction for 35 tests (the total number of phenotypes tested). Grey bars represent correlations that are not statistically significant at the 5% level. The two dotted vertical lines indicate genetic correlations of −0.5 and 0.5, respectively. All significance tests are two-sided.
Figure 3 |
Figure 3 |. Results from selected biological analyses.
a, DEPICT gene-set enrichment diagram. We identified 93 reconstituted gene sets that are significantly enriched (FDR < 0.01) for genes overlapping DEPICT-defined loci associated with general risk tolerance; using the Affinity Propagation method, these were grouped into the 13 clusters displayed in the graph. Each cluster was named after its exemplary gene set, as chosen by the Affinity Propagation tool, and each cluster’s color represents the permutation P value of its most significant gene set. The “synapse part” cluster includes the gene set “glutamate receptor activity,” and several members of the “GABAA receptor activation” cluster are defined by gamma-aminobutyric acid signaling. Overlap between the named representatives of two clusters is represented by an edge. Edge width represents the Pearson correlation ρ between the two respective vectors of gene membership scores (ρ < 0.3, no edge; 0.3 ≤ ρ < 0.5, thin edge; 0.5 ≤ ρ < 0.7, intermediate edge; ρ ≥ 0.7, thick edge). b, Results of DEPICT tissue enrichment analysis using GTEx data. The panel shows whether the genes overlapping DEPICT-defined loci associated with general risk tolerance are significantly overexpressed (relative to genes in random sets of loci matched by gene density) in various tissues. Tissues are grouped by organ or tissue type. The orange bars correspond to tissues with significant overexpression (FDR < 0.01). The y-axis is the significance on a −log10 scale. See Supplementary Note for additional details.

Similar articles

  • Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies.
    Pividori M, Schoettler N, Nicolae DL, Ober C, Im HK. Pividori M, et al. Lancet Respir Med. 2019 Jun;7(6):509-522. doi: 10.1016/S2213-2600(19)30055-4. Epub 2019 Apr 27. Lancet Respir Med. 2019. PMID: 31036433 Free PMC article.
  • GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium.
    Trampush JW, Yang ML, Yu J, Knowles E, Davies G, Liewald DC, Starr JM, Djurovic S, Melle I, Sundet K, Christoforou A, Reinvang I, DeRosse P, Lundervold AJ, Steen VM, Espeseth T, Räikkönen K, Widen E, Palotie A, Eriksson JG, Giegling I, Konte B, Roussos P, Giakoumaki S, Burdick KE, Payton A, Ollier W, Horan M, Chiba-Falek O, Attix DK, Need AC, Cirulli ET, Voineskos AN, Stefanis NC, Avramopoulos D, Hatzimanolis A, Arking DE, Smyrnis N, Bilder RM, Freimer NA, Cannon TD, London E, Poldrack RA, Sabb FW, Congdon E, Conley ED, Scult MA, Dickinson D, Straub RE, Donohoe G, Morris D, Corvin A, Gill M, Hariri AR, Weinberger DR, Pendleton N, Bitsios P, Rujescu D, Lahti J, Le Hellard S, Keller MC, Andreassen OA, Deary IJ, Glahn DC, Malhotra AK, Lencz T. Trampush JW, et al. Mol Psychiatry. 2017 Mar;22(3):336-345. doi: 10.1038/mp.2016.244. Epub 2017 Jan 17. Mol Psychiatry. 2017. PMID: 28093568 Free PMC article.
  • Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies.
    Nalls MA, Blauwendraat C, Vallerga CL, Heilbron K, Bandres-Ciga S, Chang D, Tan M, Kia DA, Noyce AJ, Xue A, Bras J, Young E, von Coelln R, Simón-Sánchez J, Schulte C, Sharma M, Krohn L, Pihlstrøm L, Siitonen A, Iwaki H, Leonard H, Faghri F, Gibbs JR, Hernandez DG, Scholz SW, Botia JA, Martinez M, Corvol JC, Lesage S, Jankovic J, Shulman LM, Sutherland M, Tienari P, Majamaa K, Toft M, Andreassen OA, Bangale T, Brice A, Yang J, Gan-Or Z, Gasser T, Heutink P, Shulman JM, Wood NW, Hinds DA, Hardy JA, Morris HR, Gratten J, Visscher PM, Graham RR, Singleton AB; 23andMe Research Team; System Genomics of Parkinson's Disease Consortium; International Parkinson's Disease Genomics Consortium. Nalls MA, et al. Lancet Neurol. 2019 Dec;18(12):1091-1102. doi: 10.1016/S1474-4422(19)30320-5. Lancet Neurol. 2019. PMID: 31701892 Free PMC article.
  • Novel Risk Loci Associated With Genetic Risk for Bipolar Disorder Among Han Chinese Individuals: A Genome-Wide Association Study and Meta-analysis.
    Li HJ, Zhang C, Hui L, Zhou DS, Li Y, Zhang CY, Wang C, Wang L, Li W, Yang Y, Qu N, Tang J, He Y, Zhou J, Yang Z, Li X, Cai J, Yang L, Chen J, Fan W, Tang W, Tang W, Jia QF, Liu W, Zhuo C, Song X, Liu F, Bai Y, Zhong BL, Zhang SF, Chen J, Xia B, Lv L, Liu Z, Hu S, Li XY, Liu JW, Cai X, Yao YG, Zhang Y, Yan H, Chang S, Zhao JP, Yue WH, Luo XJ, Chen X, Xiao X, Fang Y, Li M; GeseDNA Research Team. Li HJ, et al. JAMA Psychiatry. 2021 Mar 1;78(3):320-330. doi: 10.1001/jamapsychiatry.2020.3738. JAMA Psychiatry. 2021. PMID: 33263727 Free PMC article.
  • Lessons from postgenome-wide association studies: functional analysis of cancer predisposition loci.
    Monteiro AN, Freedman ML. Monteiro AN, et al. J Intern Med. 2013 Nov;274(5):414-24. doi: 10.1111/joim.12085. J Intern Med. 2013. PMID: 24127939 Free PMC article. Review.

Cited by

References

    1. Dohmen T et al. Individual risk attitudes: Measurement, determinants, and behavioral consequences. J. Eur. Econ. Assoc 9, 522–550 (2011).
    1. Falk A, Dohmen T, Falk A & Huffman D The nature and predictive power of preferences: Global evidence. IZA Discuss. Pap (2015).
    1. Beauchamp JP, Cesarini D & Johannesson M The psychometric and empirical properties of measures of risk preferences. J. Risk Uncertain 54, 203–237 (2017).
    1. Cesarini D, Dawes CT, Johannesson M, Lichtenstein P & Wallace B Genetic variation in preferences for giving and risk taking. Q. J. Econ 124, 809–842 (2009).
    1. Harden KP et al. Beyond dual systems: A genetically-informed, latent factor model of behavioral and self-report measures related to adolescent risk-taking. Dev. Cogn. Neurosci 25, 221–234 (2017). - PMC - PubMed

METHODS-ONLY REFERENCES:

    1. Furberg H et al. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet 42, 441–447 (2010). - PMC - PubMed
    1. Winkler TW et al. Quality control and conduct of genome-wide association meta-analyses. Nat. Protoc 9, 1192–212 (2014). - PMC - PubMed
    1. Ripke S et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014). - PMC - PubMed
    1. Okbay A et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016). - PMC - PubMed
    1. Shi H, Kichaev G & Pasaniuc B Contrasting the genetic architecture of 30 complex traits from summary association data. Am. J. Hum. Genet 99, 139–153 (2016). - PMC - PubMed

Publication types