Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Dec 19;10(12):727.
doi: 10.3390/v10120727.

SARS-Like Coronavirus WIV1-CoV Does Not Replicate in Egyptian Fruit Bats (Rousettus aegyptiacus)

Affiliations

SARS-Like Coronavirus WIV1-CoV Does Not Replicate in Egyptian Fruit Bats (Rousettus aegyptiacus)

Neeltje van Doremalen et al. Viruses. .

Abstract

Severe acute respiratory syndrome (SARS)-like WIV1-coronavirus (CoV) was first isolated from Rhinolophus sinicus bats and can use the human angiotensin converting enzyme 2 (ACE2) receptor. In the current study, we investigate the ability of WIV1-CoV to infect Rousettus aegyptiacus bats. No clinical signs were observed throughout the experiment. Furthermore, only four oropharyngeal swabs and two respiratory tissues, isolated on day 3 post inoculation, were found positive for viral RNA. Two out of twelve bats showed a modest increase in coronavirus specific antibodies post challenge. In conclusion, WIV1-CoV was unable to cause a robust infection in Rousettus aegyptiacus bats.

Keywords: WIV1-CoV; animal model; coronavirus; emerging infectious diseases.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Egyptian fruit bat ACE2 is a suitable receptor for WIV1-CoV. (A) Schematic overview of coronavirus spike proteins. (B) VSV particles pseudotyped with coronavirus spike proteins were concentrated and analyzed for spike incorporation by Western blot. (C) BHK cells were transfected with coronavirus receptors and infected with pseudotyped particles in triplicate. (D) BHK cells were transfected with ACE2 plasmids and inoculated with WIV1-CoV at a MOI of 0.01, 24 h after transfection. Supernatants were harvested at 0, and 48 hpi and viral titers were determined by endpoint titration in quadruplicate in VeroE6 cells.
Figure 2
Figure 2
ACE2 immunohistochemistry of (A) nasal turbinate—400×, multifocal apical immunoreactivity in ciliated epithelial cells (arrows); (B) trachea—400×, negative immunostaining; (C) lung—400×, multifocal cytoplasmic endothelial cell immunoreactivity (arrowheads): (D) kidney—200×, multifocal cytoplasmic endothelial cell immunoreactivity (arrowheads); (E) stomach—400×, multifocal cytoplasmic endothelial cell immunoreactivity (arrowheads): (F) intestine—100×, diffuse immunoreactivity of brush border.
Figure 3
Figure 3
Disease symptoms, shedding and tissue tropism after inoculation with WIV1-CoV. (A) Relative weight change and (B) body temperature change in Egyptian fruit bats following inoculation with WIV1-CoV. (C) Viral RNA in oropharyngeal, rectal, and urogenital swabs obtained daily. (D) Lung:body weight ratio of Egyptian fruit bats at 3, 7, and 28 dpi. (E) Viral RNA load in tissues obtained 3 dpi (N = 4 bats).
Figure 4
Figure 4
Hematology of Egyptian fruit bats inoculated with WIV1-CoV. Pre-challenge values (black) were obtained at D-95 (N = 12) and D-2 (N = 11). Post-challenge values were obtained at 3 dpi (red), 7 dpi (blue), and 28 dpi (green). All values were measured using the IDEXX ProCyte DX Analyzer. Dotted line = average of pre-challenge values.
Figure 5
Figure 5
Serology titers in sera obtained pre- and post-challenge. ELISA assays were performed using SARS-CoV proteins N and S. Bats with an increase in serology titer are shown in bold.

Similar articles

Cited by

  • Animal models for COVID-19.
    Muñoz-Fontela C, Dowling WE, Funnell SGP, Gsell PS, Riveros-Balta AX, Albrecht RA, Andersen H, Baric RS, Carroll MW, Cavaleri M, Qin C, Crozier I, Dallmeier K, de Waal L, de Wit E, Delang L, Dohm E, Duprex WP, Falzarano D, Finch CL, Frieman MB, Graham BS, Gralinski LE, Guilfoyle K, Haagmans BL, Hamilton GA, Hartman AL, Herfst S, Kaptein SJF, Klimstra WB, Knezevic I, Krause PR, Kuhn JH, Le Grand R, Lewis MG, Liu WC, Maisonnasse P, McElroy AK, Munster V, Oreshkova N, Rasmussen AL, Rocha-Pereira J, Rockx B, Rodríguez E, Rogers TF, Salguero FJ, Schotsaert M, Stittelaar KJ, Thibaut HJ, Tseng CT, Vergara-Alert J, Beer M, Brasel T, Chan JFW, García-Sastre A, Neyts J, Perlman S, Reed DS, Richt JA, Roy CJ, Segalés J, Vasan SS, Henao-Restrepo AM, Barouch DH. Muñoz-Fontela C, et al. Nature. 2020 Oct;586(7830):509-515. doi: 10.1038/s41586-020-2787-6. Epub 2020 Sep 23. Nature. 2020. PMID: 32967005 Free PMC article. Review.
  • Bat-borne virus diversity, spillover and emergence.
    Letko M, Seifert SN, Olival KJ, Plowright RK, Munster VJ. Letko M, et al. Nat Rev Microbiol. 2020 Aug;18(8):461-471. doi: 10.1038/s41579-020-0394-z. Epub 2020 Jun 11. Nat Rev Microbiol. 2020. PMID: 32528128 Free PMC article. Review.
  • SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study.
    Schlottau K, Rissmann M, Graaf A, Schön J, Sehl J, Wylezich C, Höper D, Mettenleiter TC, Balkema-Buschmann A, Harder T, Grund C, Hoffmann D, Breithaupt A, Beer M. Schlottau K, et al. Lancet Microbe. 2020 Sep;1(5):e218-e225. doi: 10.1016/S2666-5247(20)30089-6. Epub 2020 Jul 7. Lancet Microbe. 2020. PMID: 32838346 Free PMC article.
  • Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication.
    Chen M, Shen W, Rowan NR, Kulaga H, Hillel A, Ramanathan M Jr, Lane AP. Chen M, et al. Eur Respir J. 2020 Sep 24;56(3):2001948. doi: 10.1183/13993003.01948-2020. Print 2020 Sep. Eur Respir J. 2020. PMID: 32817004 Free PMC article.
  • Ecology, evolution and spillover of coronaviruses from bats.
    Ruiz-Aravena M, McKee C, Gamble A, Lunn T, Morris A, Snedden CE, Yinda CK, Port JR, Buchholz DW, Yeo YY, Faust C, Jax E, Dee L, Jones DN, Kessler MK, Falvo C, Crowley D, Bharti N, Brook CE, Aguilar HC, Peel AJ, Restif O, Schountz T, Parrish CR, Gurley ES, Lloyd-Smith JO, Hudson PJ, Munster VJ, Plowright RK. Ruiz-Aravena M, et al. Nat Rev Microbiol. 2022 May;20(5):299-314. doi: 10.1038/s41579-021-00652-2. Epub 2021 Nov 19. Nat Rev Microbiol. 2022. PMID: 34799704 Free PMC article. Review.

References

    1. De Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14:523–534. doi: 10.1038/nrmicro.2016.81. - DOI - PMC - PubMed
    1. Lau S.K., Woo P.C., Li K.S., Huang Y., Tsoi H.W., Wong B.H., Wong S.S., Leung S.Y., Chan K.H., Yuen K.Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA. 2005;102:14040–14045. doi: 10.1073/pnas.0506735102. - DOI - PMC - PubMed
    1. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., Wang H., Crameri G., Hu Z., Zhang H., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005;310:676–679. doi: 10.1126/science.1118391. - DOI - PubMed
    1. Becker M.M., Graham R.L., Donaldson E.F., Rockx B., Sims A.C., Sheahan T., Pickles R.J., Corti D., Johnston R.E., Baric R.S., et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc. Natl. Acad. Sci. USA. 2008;105:19944–19949. doi: 10.1073/pnas.0808116105. - DOI - PMC - PubMed
    1. Ge X.Y., Li J.L., Yang X.L., Chmura A.A., Zhu G., Epstein J.H., Mazet J.K., Hu B., Zhang W., Peng C., et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503:535–538. doi: 10.1038/nature12711. - DOI - PMC - PubMed

Publication types

LinkOut - more resources