Computational Analyses Connect Small-Molecule Sensitivity to Cellular Features Using Large Panels of Cancer Cell Lines
- PMID: 30519951
- PMCID: PMC6563933
- DOI: 10.1007/978-1-4939-8891-4_14
Computational Analyses Connect Small-Molecule Sensitivity to Cellular Features Using Large Panels of Cancer Cell Lines
Abstract
We recently pioneered several analyses of small-molecule sensitivity data collected from large-scale perturbation of hundreds of cancer cell lines with hundreds of small molecules, with cell viability measured as a readout of compound sensitivity. We performed these studies using cancer cell lines previously annotated with cellular, genomic, and basal gene-expression features. By combining small-molecule sensitivity data with these other datasets, we identified new candidate biomarkers of sensitivity, gained insights into small-molecule mechanisms of action, and proposed candidate hypotheses for cancer dependencies (including candidate combination therapies). Nevertheless, given the size of these datasets, we expect that many connections between cellular features and small-molecule sensitivity remain underexplored. In this chapter, we provide a step-by-step account of foundational data-analysis methods underlying our published studies, including working MATLAB code applied to our own public datasets. These procedures will allow others to repeat analyses of our data with new parameters, in additional contexts, and to adapt our procedures to their own datasets.
Keywords: Biomarkers; Cancer dependencies; Chemical biology; Combination therapy; Computational biology; Data sharing; Pharmacogenomics; Public datasets; Reproducibility.
Figures
Similar articles
-
Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset.Cancer Discov. 2015 Nov;5(11):1210-23. doi: 10.1158/2159-8290.CD-15-0235. Epub 2015 Oct 19. Cancer Discov. 2015. PMID: 26482930 Free PMC article.
-
Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.BMC Cancer. 2017 Aug 2;17(1):513. doi: 10.1186/s12885-017-3500-5. BMC Cancer. 2017. PMID: 28768489 Free PMC article.
-
GDSCTools for mining pharmacogenomic interactions in cancer.Bioinformatics. 2018 Apr 1;34(7):1226-1228. doi: 10.1093/bioinformatics/btx744. Bioinformatics. 2018. PMID: 29186349 Free PMC article.
-
A review of connectivity map and computational approaches in pharmacogenomics.Brief Bioinform. 2018 May 1;19(3):506-523. doi: 10.1093/bib/bbw112. Brief Bioinform. 2018. PMID: 28069634 Free PMC article. Review.
-
Bioinformatics Approaches to Predict Drug Responses from Genomic Sequencing.Methods Mol Biol. 2018;1711:277-296. doi: 10.1007/978-1-4939-7493-1_14. Methods Mol Biol. 2018. PMID: 29344895 Review.
References
-
- Basu A, Bodycombe NE, Cheah JH, Price EV, Liu K, Schaefer GI, Ebright RY, Stewart ML, Ito D, Wang S, Bracha AL, Liefeld T, Wawer M, Gilbert JC, Wilson AJ, Stransky N, Kryukov GV, Dancik V, Barretina J, Garraway LA, Hon CS, Munoz B, Bittker JA, Stockwell BR, Khabele D, Stern AM, Clemons PA, Shamji AF, Schreiber SL (2013) An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 154 (5):1151–1161. doi:10.1016/j.cell.2013.08.003 - DOI - PMC - PubMed
-
- Seashore-Ludlow B, Rees MG, Cheah JH, Cokol M, Price EV, Coletti ME, Jones V, Bodycombe NE, Soule CK, Gould J, Alexander B, Li A, Montgomery P, Wawer MJ, Kuru N, Kotz JD, Hon CS, Munoz B, Liefeld T, Dancik V, Bittker JA, Palmer M, Bradner JE, Shamji AF, Clemons PA, Schreiber SL (2015) Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov 5 (11):1210–1223. doi:10.1158/2159-8290.CD-15-0235 - DOI - PMC - PubMed
-
- Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S, Javaid S, Coletti ME, Jones VL, Bodycombe NE, Soule CK, Alexander B, Li A, Montgomery P, Kotz JD, Hon CS, Munoz B, Liefeld T, Dancik V, Haber DA, Clish CB, Bittker JA, Palmer M, Wagner BK, Clemons PA, Shamji AF, Schreiber SL (2016) Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol 12 (2):109–116. doi:10.1038/nchembio.1986 - DOI - PMC - PubMed
-
- Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P Jr., de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483 (7391):603–607. doi:10.1038/nature11003 - DOI - PMC - PubMed
-
- Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, Liu Q, Iorio F, Surdez D, Chen L, Milano RJ, Bignell GR, Tam AT, Davies H, Stevenson JA, Barthorpe S, Lutz SR, Kogera F, Lawrence K, McLaren-Douglas A, Mitropoulos X, Mironenko T, Thi H, Richardson L, Zhou W, Jewitt F, Zhang T, O’Brien P, Boisvert JL, Price S, Hur W, Yang W, Deng X, Butler A, Choi HG, Chang JW, Baselga J, Stamenkovic I, Engelman JA, Sharma SV, Delattre O, Saez-Rodriguez J, Gray NS, Settleman J, Futreal PA, Haber DA, Stratton MR, Ramaswamy S, McDermott U, Benes CH (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483 (7391):570–575. doi:10.1038/nature11005 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources