Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 10:9:2319.
doi: 10.3389/fimmu.2018.02319. eCollection 2018.

Class-B CpG-ODN Formulated With a Nanostructure Induces Type I Interferons-Dependent and CD4+ T Cell-Independent CD8+ T-Cell Response Against Unconjugated Protein Antigen

Affiliations

Class-B CpG-ODN Formulated With a Nanostructure Induces Type I Interferons-Dependent and CD4+ T Cell-Independent CD8+ T-Cell Response Against Unconjugated Protein Antigen

Ana L Chiodetti et al. Front Immunol. .

Abstract

There is a need for new vaccine adjuvant strategies that offer both vigorous antibody and T-cell mediated protection to combat difficult intracellular pathogens and cancer. To this aim, we formulated class-B synthetic oligodeoxynucleotide containing unmethylated cytosine-guanine motifs (CpG-ODN) with a nanostructure (Coa-ASC16 or coagel) formed by self-assembly of 6-0-ascorbyl palmitate ester. Our previous results demonstrated that mice immunized with ovalbumin (OVA) and CpG-ODN formulated with Coa-ASC16 (OVA/CpG-ODN/Coa-ASC16) elicited strong antibodies (IgG1 and IgG2a) and Th1/Th17 cellular responses without toxic systemic effects. These responses were superior to those induced by a solution of OVA with CpG-ODN or OVA/CpG-ODN formulated with aluminum salts. In this study, we investigated the capacity of this adjuvant strategy (CpG-ODN/Coa-ASC16) to elicit CD8+ T-cell response and some of the underlying cellular and molecular mechanisms involved in adaptive response. We also analyzed whether this adjuvant strategy allows a switch from an immunization scheme of three-doses to one of single-dose. Our results demonstrated that vaccination with OVA/CpG-ODN/Coa-ASC16 elicited an antigen-specific long-lasting humoral response and importantly-high quality CD8+ T-cell immunity with a single-dose immunization. Moreover, Coa-ASC16 promoted co-uptake of OVA and CpG-ODN by dendritic cells. The CD8+ T-cell response induced by OVA/CpG-ODN/Coa-ASC16 was dependent of type I interferons and independent of CD4+ T-cells, and showed polyfunctionality and efficiency against an intracellular pathogen. Furthermore, the cellular and humoral responses elicited by the nanostructured formulation were IL-6-independent. This system provides a simple and inexpensive adjuvant strategy with great potential for future rationally designed vaccines.

Keywords: CD8+ T-cell response; CpG-ODN; adjuvant; ascorbyl palmitate ester; nanostructure; type I interferons; vaccine.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The formulation of OVA and CpG-ODN with the nanostructure. (A) Schematic representation of Coa-ASC16 and photographic image. (B) Schematic representation of OVA/CpG-ODN/Coa-ASC16. (C) Native-PAGE of formulations using IRDye® 680RD OVA and 5′ IRDye® 800CW CpG-ODN comparing non-treated and heat-treated samples (marked with asterisk).
Figure 2
Figure 2
Formulation of OVA/CpG-ODN with Coa-ASC16 optimizes humoral and CD8+ T-cell responses independently of IL-6. WT or Il6−/− mice were immunized with OVA/Coa-ASC16, OVA/CpG-ODN, OVA/CpG-ODN/Coa-ASC16 (on days 0, 7, and 14) or OVA/CFA (days 0, 15, and 30). (A,C) In vivo killing assay and (B,D) ex vivo IFN-γ secretion by splenocytes after stimulation with SIINFEKL peptide determined by ELISA on day 21. (E) Titers of OVA-specific IgG1 and IgG2c in plasma determined by ELISA on day 21. (F) WT mice. Avidity OVA-specific IgG in plasma determined by ELISA using KSCN elution seven days after the last immunization. The data show the mean ± SEM of individual values (3-4 mice/treatment group in each experiment) and are representative of two independent experiments performed. *p < 0.05, **p < 0.01, ***p < 0.001.
Figure 3
Figure 3
The nanostructured formulation allows antigen dose-sparing without compromise the resulting antigen-specific immune response. C57BL/6 mice were immunized on day 0, 7, and 14 with OVA (2 μg)/CpG-ODN/Coa-ASC16 or OVA (6 μg)/CpG-ODN/Coa-ASC16. Seven days after the last immunization, plasma and spleen were obtained. (A) Titers of OVA-specific IgG1 and IgG2c in plasma determined by ELISA. (B) Ex vivo IFN-γ secretion by splenocytes after stimulation with OVA determined by ELISA. The data show the mean ± SEM of individual values (4 mice/treatment group in each experiment) and are representative of two independent experiments performed. n.s., not significant.
Figure 4
Figure 4
The nanostructured formulation elicits long-lasting humoral response with a single-dose immunization. C57BL/6 mice were immunized on day 0 with OVA/CpG-ODN or OVA/CpG-ODN/Coa-ASC16. On day 147 after immunization, mice were intraperitoneally challenged with OVA. Plasma samples were collected at different time points for determination of OVA-specific antibodies titers by ELISA. (A) Kinetics in plasma of OVA-specific IgG. (B) OVA-specific IgG2c on days 140 (pre-challenge) and 154 (post-challenge) after immunization. The data show the mean ± SEM of individual values (4 mice/treatment group in each experiment) and are representative of two independent experiments performed. ***p < 0.001, n.s., not significant.
Figure 5
Figure 5
CD8+ T-cell response elicited by the nanostructured formulation is CD4+ T-cell independent and IFN-I dependent. WT (A–D) or Ifnar1−/− (E–F) mice were immunized with a single-dose (day 0) of the indicated formulations. (A,C,E) In vivo killing assay and (B, D and F) ex vivo IFN-γ secretion by splenocytes after stimulation with SIINFEKL peptide determined by ELISA on day 7. In C and D, mice were treated on days −2, −1, 0, and 2 with anti-CD4 or isotype control (IgG) antibodies. The data show the mean ± SEM of individual values (3-4 mice/treatment group in each experiment) and are representative of two independent experiments performed. n.s., not significant, *p < 0.05, **p < 0.01, ***p < 0.001.
Figure 6
Figure 6
The formulation of OVA/CpG-ODN with Coa-ASC16 enhances in vivo co-uptake of OVA and CpG-ODN by DCs. C57BL/6 mice were immunized in both hind limbs with Alexa Fluor 647-OVA/Alexa Fluor 488-CpG-ODN or Alexa Fluor 647-OVA/Alexa Fluor 488-CpG-ODN/Coa-ASC16. Seventy-two h later, cell suspension from inguinal LN were analyzed by flow cytometry. (A) Percentage and (B) absolute number of total CD11c+ DCs. (C) Percentage and (D) absolute number of total OVA+ CD11c+ DCs. (E) Percentage and (F) absolute number of total CpG-ODN+ CD11c+ DCs. (G) Percentage and (H) absolute number of OVA+ or CpG-ODN+ simple positive and OVA+ CpG-ODN+ double positive within CD11c+ DCs. The data show the mean ± SEM of individual values (3-4 mice/treatment group in each experiment) and are representative of two independent experiments performed. n.s., not significant, *p < 0.05, **p < 0.01, ***p < 0.001.
Figure 7
Figure 7
The formulation of OVA/CpG-ODN with Coa-ASC16 enhances expansion and polyfunctionality of effector CD8+ T-cells. C57BL/6 mice were immunized on day 0 with OVA/CpG-ODN, OVA/CpG-ODN/Coa-ASC16 or ΔactA Lm-OVA and euthanized on day 7 for spleen extraction. (A) Percentage of SIINFEKL-Kb tetramer+ CD8+ T-cells. (B) Total number of SIINFEKL-Kb tetramer+ CD8+ T-cells/spleen. (C–E) CD8+ T-cell cytokine production from splenocytes after in vitro stimulation with SIINFEKL peptide. Multiparameter flow cytometry was used to determine (C) percentage and (D) total number of cytokine producing CD8+ T-cells expressing each of the seven possible combinations of IFN-γ, TNF-α, and IL-2, (E) fraction of total CD8+ T-cell response comprising cells expressing each of the seven combinations of IFN- γ, TNF-α, and IL-2. For gating strategy and representative flow cytometry data, see Supplementary Figure 3. The data show the mean ± SEM of individual values (4 mice/treatment group in each experiment) and are representative of two independent experiments performed. *p < 0.05, **p < 0.01, ***p < 0.001.
Figure 8
Figure 8
CD8+ T-cell response induced by the nanostructured formulation protects against Lm-OVA infection. C57BL/6 mice were immunized on day 0 with OVA/CpG-ODN, OVA/CpG-ODN/Coa-ASC16 or CpG-ODN/Coa-ASC16. Seven days later, immunized and non-immunized mice were intravenously infected with 1 × 105 CFU of Lm-OVA. Two days after infection, mice were euthanized for liver and spleen extraction. (A) Percentage of SIINFEKL-Kb tetramer+ CD8+ T-cells in spleen. (B) Total number of SIINFEKL-Kb tetramer+ CD8+ T-cells/spleen. (C–E) CD8+ T-cell cytokine production from splenocytes after in vitro stimulation with SIINFEKL peptide. Multiparameter flow cytometry was used to determine (C) percentage and (D) total number of CD8+ T-cells expressing each of the seven possible combinations of IFN-γ, TNF-α, and CD107a, (E) the fraction of the total CD8+ T-cell response comprising cells expressing each of the seven combinations of IFN-γ, TNF-α and CD107a. For gating strategy and representative flow cytometry data, see Supplementary Figure 4. (F) Bacterial load in liver. The data show the mean ± SEM of individual values (3–4 mice/treatment group in each experiment) and are representative of two independent experiments performed. n.s., not significant, *p < 0.05, **p < 0.01, ***p < 0.001.

Similar articles

Cited by

References

    1. Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol. (2010) 17:1055–65. 10.1128/CVI.00131-10 - DOI - PMC - PubMed
    1. Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity (2010) 33:492–503. 10.1016/j.immuni.2010.10.002 - DOI - PMC - PubMed
    1. Karch CP, Burkhard P. Vaccine technologies: from whole organisms to rationally designed protein assemblies. Biochem Pharmacol. (2016) 120:1–14. 10.1016/j.bcp.2016.05.001 - DOI - PMC - PubMed
    1. Apostolico Jde S, Lunardelli VA, Coirada FC, Boscardin SB, Rosa DS. Adjuvants: classification, modus operandi, and licensing. J Immunol Res. (2016) 2016:1459394. 10.1155/2016/1459394 - DOI - PMC - PubMed
    1. McKee AS, Marrack P. Old and new adjuvants. Curr Opin Immunol. (2017) 47:44–51. 10.1016/j.coi.2017.06.005 - DOI - PMC - PubMed

Publication types

MeSH terms