Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization
- PMID: 30125668
- DOI: 10.1016/j.semcdb.2018.07.012
Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization
Abstract
Despite all the efforts the three-dimensional higher-order architecture and dynamics in the cell nucleus are still debated. The regulation of genes, their transcription, replication, as well as differentiation in Eukarya is, however, closely connected to this architecture and dynamics. Here, an evaluation and review framework is setup to investigate the folding of a 30 nm chromatin fibre into chromosome territories by comparing computer simulations of two different chromatin topologies to experiments: The Multi-Loop-Subcompartment (MLS) model, in which small loops form rosettes connected by chromatin linkers, and the Random-Walk/Giant-Loop (RW/GL) model, in which large loops are attached to a flexible non-protein backbone, were simulated for various loop, rosette, and linker sizes. The 30 nm chromatin fibre was modelled as a polymer chain with stretching, bending, and excluded volume interactions. A spherical boundary potential simulated the confinement by other chromosomes and the nuclear envelope. Monte Carlo and Brownian Dynamics methods were applied to generate chain configurations at thermodynamic equilibrium. Both the MLS and the RW/GL models form chromosome territories, with different morphologies: The MLS rosettes form distinct subchromosomal domains, compatible in size as those from light microscopic observations. In contrast, the big RW/GL loops lead to a more homogeneous chromatin distribution. Only the MLS model agrees with the low overlap of chromosomes, their arms, and subchromosomal domains found experimentally. A review of experimental spatial distance measurements between genomic markers labelled by FISH as a function of their genomic separation from different publications and comparison to simulated spatial distances also favours an MLS-like model with loops and linkers of 63 to 126 kbp. The chromatin folding topology also reduces the apparent persistence length of the chromatin fibre to a value significantly lower than the free solution persistence length, explaining the low persistence lengths found various experiments. The predicted large spaces between the chromatin fibres allow typically sized biological molecules to reach nearly every location in the nucleus by moderately obstructed diffusion and disagrees with the much simplified assumption that defined channels between territories for molecular transport as in the Interchromosomal Domain (ICD) hypothesis exist. All this is also in agreement with recent selective high-resolution chromosome interaction capture (T2C) experiments, the scaling behaviour of the DNA sequence, the dynamics of the chromatin fibre, the nuclear diffusion of molecules, as well as other experiments. In summary, this polymer simulation framework compared to experimental data clearly favours only a quasi-chromatin fibre forming a stable multi-loop aggregate/rosette like genome organization and dynamics whose local topology is tightly connected to the global morphology and dynamics of the cell nucleus.
Keywords: Chromatin flexibility; Fluorescence in situ hybridization; Genome organization; Interphase chromosome structure; Monte-Carlo/Brownian dynamics; Nuclear architecture; Spatial precision distance confocal microscopy; Wormlike chain polymer model.
Copyright © 2018 Elsevier Ltd. All rights reserved.
Similar articles
-
Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.Results Probl Cell Differ. 2022;70:495-549. doi: 10.1007/978-3-031-06573-6_18. Results Probl Cell Differ. 2022. PMID: 36348120
-
The detailed 3D multi-loop aggregate/rosette chromatin architecture and functional dynamic organization of the human and mouse genomes.Epigenetics Chromatin. 2016 Dec 24;9:58. doi: 10.1186/s13072-016-0089-x. eCollection 2016. Epigenetics Chromatin. 2016. PMID: 28035242 Free PMC article.
-
Compartmentalization of interphase chromosomes observed in simulation and experiment.J Mol Biol. 1999 Jan 22;285(3):1053-65. doi: 10.1006/jmbi.1998.2361. J Mol Biol. 1999. PMID: 9887267
-
Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture.Crit Rev Eukaryot Gene Expr. 2000;10(2):179-212. Crit Rev Eukaryot Gene Expr. 2000. PMID: 11186332 Review.
-
Mini review: form and function in the human interphase chromosome.Cytogenet Cell Genet. 2000;90(1-2):13-21. doi: 10.1159/000015654. Cytogenet Cell Genet. 2000. PMID: 11060439 Review.
Cited by
-
Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.Results Probl Cell Differ. 2022;70:495-549. doi: 10.1007/978-3-031-06573-6_18. Results Probl Cell Differ. 2022. PMID: 36348120
-
Nuclear Actin Dynamics in Gene Expression, DNA Repair, and Cancer.Results Probl Cell Differ. 2022;70:625-663. doi: 10.1007/978-3-031-06573-6_23. Results Probl Cell Differ. 2022. PMID: 36348125 Free PMC article.
-
Nucleus size and its effect on nucleosome stability in living cells.Biophys J. 2022 Nov 1;121(21):4189-4204. doi: 10.1016/j.bpj.2022.09.019. Epub 2022 Sep 21. Biophys J. 2022. PMID: 36146936 Free PMC article.
-
Scaling Relationship in Chromatin as a Polymer.Results Probl Cell Differ. 2022;70:263-277. doi: 10.1007/978-3-031-06573-6_8. Results Probl Cell Differ. 2022. PMID: 36348110
-
A Lamin-Associated Chromatin Model for Chromosome Organization.Biophys J. 2020 Jun 16;118(12):3041-3050. doi: 10.1016/j.bpj.2020.05.014. Epub 2020 May 20. Biophys J. 2020. PMID: 32492372 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources