Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jul 27;17(1):174.
doi: 10.1186/s12944-018-0833-2.

New insights into apolipoprotein A5 in controlling lipoprotein metabolism in obesity and the metabolic syndrome patients

Affiliations
Review

New insights into apolipoprotein A5 in controlling lipoprotein metabolism in obesity and the metabolic syndrome patients

Xin Su et al. Lipids Health Dis. .

Abstract

Apolipoprotein A5 (apoA5) has been identified to play an important role in lipid metabolism, specifically in triglyceride (TG) and TG-rich lipoproteins (TRLs) metabolism. Numerous evidence has demonstrated for an association between apoA5 and the increased risk of obesity and metabolic syndrome, but the mechanism remains to be fully elucidated. Recently, several studies verified that apoA5 could significantly reduce plasma TG level by stimulating lipoprotein lipase (LPL) activity, and the intracellular role of apoA5 has also been proved since apoA5 is associated with cytoplasmic lipid droplets (LDs) and affects intrahepatic TG accumulation. Furthermore, since adipocytes provide the largest storage depot for TG and play a crucial role in the development of obesity, we could infer that apoA5 also acts as a novel regulator to modulate TG storage in adipocytes. In this review, we focus on the association of gene and protein of apoA5 with obesity and metabolic syndrome, and provide new insights into the physiological role of apoA5 in humans, giving a potential therapeutic target for obesity and associated disorders.

Keywords: Adipocytes; Apolipoprotein A5; Lipoprotein metabolism; Metabolic syndrome; Obesity.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The extracellular role and the mechanisms of ApoA5. ApoA5 accelerates plasma TG hydrolysis by LPL and can be reused. See text for details
Fig. 2
Fig. 2
The intracellular role and the mechanisms of ApoA5 in adipocytes and hepatocytes. a ApoA5 may mediate receptor or proteoglycan mediated remnant uptake into the liver. See text for details. b ApoA5 may inhibit the progress of adipogenesis differentiation of AMSCs. See text for details

Similar articles

Cited by

References

    1. Pietro S, Matteo C, Maria M, Pietro AM, Maria LM, Salvatore N, Pasquale P, Pier SS, Roberto P, Marco MC, “Gruppo di Studio Ipertensione, Prevenzione e Riabilitazione”, Società Italiana di Cardiologia. Nutraceuticals and dyslipidaemia: beyond the common therapeutics. J Funct Foods. 2014;6:11–32.
    1. Zeng Q, He Y, Dong S, Zhao X, Chen Z, Song Z, Chang G, Yang F, Wang Y. Optimal cut-off values of BMI, waist circumference and waist:height ratio for defining obesity in Chinese adults. Br J Nutr. 2014;112:1735–1744. doi: 10.1017/S0007114514002657. - DOI - PubMed
    1. Giusti V, Theytaz F, Di Vetta V, Clarisse M, Suter M, Tappy L. Energy and macronutrient intake after gastric bypass for morbid obesity: a 3-y observational study focused on protein consumption. Am J Clin Nutr. 2016;103:18–24. doi: 10.3945/ajcn.115.111732. - DOI - PubMed
    1. Schroder H, Fito M, Covas MI, investigators R Association of fast food consumption with energy intake, diet quality, body mass index and the risk of obesity in a representative Mediterranean population. Br J Nutr. 2007;98:1274–1280. doi: 10.1017/S0007114507781436. - DOI - PubMed
    1. Cedo L, Santos D, Roglans N, Julve J, Pallares V, Rivas-Urbina A, Llorente-Cortes V, Laguna JC, Blanco-Vaca F, Escola-Gil JC. Human hepatic lipase overexpression in mice induces hepatic steatosis and obesity through promoting hepatic lipogenesis and white adipose tissue lipolysis and fatty acid uptake. PLoS One. 2017;12:e0189834. doi: 10.1371/journal.pone.0189834. - DOI - PMC - PubMed

MeSH terms