The molecular language of membraneless organelles
- PMID: 30045872
- PMCID: PMC6509512
- DOI: 10.1074/jbc.TM118.001192
The molecular language of membraneless organelles
Abstract
Eukaryotic cells organize their intracellular components into organelles that can be membrane-bound or membraneless. A large number of membraneless organelles, including nucleoli, Cajal bodies, P-bodies, and stress granules, exist as liquid droplets within the cell and arise from the condensation of cellular material in a process termed liquid-liquid phase separation (LLPS). Beyond a mere organizational tool, concentrating cellular components into membraneless organelles tunes biochemical reactions and improves cellular fitness during stress. In this review, we provide an overview of the molecular underpinnings of the formation and regulation of these membraneless organelles. This molecular understanding explains emergent properties of these membraneless organelles and shines new light on neurodegenerative diseases, which may originate from disturbances in LLPS and membraneless organelles.
Keywords: Cajal body; RNA binding protein; amyotrophic lateral sclerosis (ALS) (Lou Gehrig disease); chaperone; disaggregase; liquid–liquid phase separation; nucleolus; organelle; stress granule; subcellular organelle.
© 2019 Gomes and Shorter.
Conflict of interest statement
The authors declare that they have no conflicts of interest with the contents of this article
Figures
Similar articles
-
More than just a phase: the search for membraneless organelles in the bacterial cytoplasm.Curr Genet. 2019 Jun;65(3):691-694. doi: 10.1007/s00294-018-00927-x. Epub 2019 Jan 2. Curr Genet. 2019. PMID: 30603876 Review.
-
MloDisDB: a manually curated database of the relations between membraneless organelles and diseases.Brief Bioinform. 2021 Jul 20;22(4):bbaa271. doi: 10.1093/bib/bbaa271. Brief Bioinform. 2021. PMID: 33126250
-
Phase separation of RNA-binding proteins in physiology and disease: An introduction to the JBC Reviews thematic series.J Biol Chem. 2019 May 3;294(18):7113-7114. doi: 10.1074/jbc.REV119.007944. Epub 2019 Apr 4. J Biol Chem. 2019. PMID: 30948513 Free PMC article. Review.
-
Altered Phase Separation and Cellular Impact in C9orf72-Linked ALS/FTD.Front Cell Neurosci. 2021 Apr 21;15:664151. doi: 10.3389/fncel.2021.664151. eCollection 2021. Front Cell Neurosci. 2021. PMID: 33967699 Free PMC article.
-
Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates.Dev Cell. 2020 Oct 12;55(1):30-44. doi: 10.1016/j.devcel.2020.06.033. Epub 2020 Jul 28. Dev Cell. 2020. PMID: 32726575 Review.
Cited by
-
G-Quadruplexes as pathogenic drivers in neurodegenerative disorders.Nucleic Acids Res. 2021 May 21;49(9):4816-4830. doi: 10.1093/nar/gkab164. Nucleic Acids Res. 2021. PMID: 33784396 Free PMC article. Review.
-
Atomistic insights into the reentrant phase-transitions in polyuracil and polylysine mixtures.J Chem Phys. 2024 Jul 7;161(1):015101. doi: 10.1063/5.0206190. J Chem Phys. 2024. PMID: 38949285
-
How bacteria actively use passive physics to make biofilms.Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2403842121. doi: 10.1073/pnas.2403842121. Epub 2024 Sep 12. Proc Natl Acad Sci U S A. 2024. PMID: 39264745 Free PMC article.
-
Paraspeckles interact with SWI/SNF subunit ARID1B to regulate transcription and splicing.EMBO Rep. 2023 Jan 9;24(1):e55345. doi: 10.15252/embr.202255345. Epub 2022 Nov 10. EMBO Rep. 2023. PMID: 36354291 Free PMC article.
-
NMR and EPR reveal a compaction of the RNA-binding protein FUS upon droplet formation.Nat Chem Biol. 2021 May;17(5):608-614. doi: 10.1038/s41589-021-00752-3. Epub 2021 Mar 8. Nat Chem Biol. 2021. PMID: 33686294 Free PMC article.
References
-
- Oparin A. I. (1938) The Origin of Life, McMillan, New York
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous