Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug;57(8):1055-1066.
doi: 10.1002/mc.22825. Epub 2018 May 2.

Phenylbutyl isoselenocyanate induces reactive oxygen species to inhibit androgen receptor and to initiate p53-mediated apoptosis in LNCaP prostate cancer cells

Affiliations

Phenylbutyl isoselenocyanate induces reactive oxygen species to inhibit androgen receptor and to initiate p53-mediated apoptosis in LNCaP prostate cancer cells

Wei Wu et al. Mol Carcinog. 2018 Aug.

Abstract

Previous studies have established the in vivo bioavailability and efficacious dosages of phenylbutyl isoselenocyanate (ISC-4), a selenium-substituted isothiocyanate, against mouse xenograft models of human melanoma and colorectal cancer. To explore its potential attributes against prostate cancer, we treated human LNCaP prostate cancer cells with ISC-4 and examined their apoptosis responses, and interrogated the signaling mechanisms through pharmacological and siRNA knockdown approaches. Our results show that ISC-4 was more potent at inducing apoptosis than its sulfur analog phenylbutyl isothiocyanate (PBITC) without suppressing protein kinase AKT Ser473 phosphorylation. ISC-4 induced apoptosis in concentration- and time-dependent manners, and the apoptosis execution was attenuated by pre-incubation with a pan caspase inhibitor. ISC-4 decreased the abundance of androgen receptor (AR) and its best known target prostate specific antigen (PSA) without decreasing their steady state mRNA. ISC-4 upregulated the abundance of p53 protein and its Ser15 -phosphorylative activation, and that of DNA double strand break marker Ser139 -p-H2A.X coincident with apoptotic exposure. Similar to the rapid induction of reactive oxygen species (ROS) by isothiocyanates, ISC-4 increased dihydroethidium-detectable signals in LNCaP cells. Pre-incubation with ROS scavenger N-acetyl-l-cysteine preserved AR and PSA abundance, markedly reduced ISC-4-induced apoptosis and attenuated p53 Ser phosphorylation, p21Cip1, and p-H2A.X. Furthermore, siRNA knockdown of p53 did not suppress ROS production, but decreased ISC-4-induced apoptosis. Knocking down p53-targets PUMA and Bax exerted greater protective effect on ISC-4-induced apoptosis than depleting p21Cip1. In summary, ISC-4 inhibited LNCaP cell growth and survival with ROS-mediated suppression of AR axis signaling and induction of p53-PUMA-Bax mitochondrial apoptosis.

Keywords: apoptosis; isoselenocyanate; isothiocyanate; p53; prostate cancer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources