Skip to main page content
U.S. flag

An official website of the United States government

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Jan 12:10:440.
doi: 10.3389/fnmol.2017.00440. eCollection 2017.

Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling

Affiliations
Review

Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling

James C Sears et al. Front Mol Neurosci. .

Abstract

Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the activity-dependent repression of translation. In the well-characterized Drosophila neuromuscular junction (NMJ) model, developmental synaptogenesis and activity-dependent synaptic remodeling both require extracellular matrix metalloproteinase (MMP) enzymes interacting with the heparan sulfate proteoglycan (HSPG) glypican dally-like protein (Dlp) to restrict trans-synaptic Wnt signaling, with FXS synaptogenic defects alleviated by both MMP and HSPG reduction. This new mechanistic axis spanning from activity to FMRP to HSPG-dependent MMP regulation modulates activity-dependent synaptogenesis. We discuss future directions for these mechanisms, and intersecting research priorities for FMRP in glial and signaling interactions.

Keywords: Drosophila; critical period; fragile X syndrome; signaling; synapse.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Central brain mushroom body (MB) circuit defects in the Drosophila Fragile X syndrome (FXS) model. Schematic of the Drosophila central brain olfactory circuitry comparing wildtype (Left) and the FXS disease model (Right). Olfactory sensory neurons (OSNs) (red, bottom) expressing specific odorant receptors converge in antennal lobe (AL) glomeruli to synapse on projection neurons (blue, middle). Projection neurons output to the MB calyx (red, top) to synapse on Kenyon cells (KCs) (green), which in turn project to MB axonal lobes to synapse on MB output neurons [e.g., MB output neuron type 11 (MBON-11, yellow)]. Changes in olfactory sensory experience (lightning bolts Δ) drive activity-dependent synaptic remodeling throughout this circuit in the early-use critical period, which fails in the FXS condition. Top insets (black boxes): schematic of MB calyx in wildtype and the FXS model. Projection neuron synaptic termini are normally subject to activity-dependent remodeling, but this is absent in the FXS model. The resulting collapsed synaptic architecture with enlarged boutons is phenocopied with strong activity in wildtype. Bottom insets (pink boxes): schematic of single projection neuron synaptic boutons in the wildtype and FXS model MB calyx. The endosomal sorting complex required for transport III (ESCRTIII) core component Shrub normally mediates rapid endocytic membrane trafficking within the PN synaptic boutons, but the FXS model displays an increased number of trafficking-arrested, enlarged synaptic endosomes.
FIGURE 2
FIGURE 2
Presynaptic endosomal membrane trafficking defects in the Drosophila FXS model. Diagram summarizing a new fragile X mental retardation protein (FMRP) role in the regulation of presynaptic membrane trafficking by the ESCRTIII core component Shrub/CHMP4. (Top) In wildtype animals, appropriate Shrub levels mediate endosomal membrane trafficking within presynaptic boutons, which is required for activity-dependent synaptic pruning/refinement. It is hypothesized that activity-dependent endosomal trafficking regulates the presentation of surface signaling molecules that trigger phagocytosis by glia (green) during the early-use critical period. (Bottom) In the FXS disease model, excess Shrub translation leads to stalled endosomal membrane trafficking defects, resulting in enlarged endosomes within presynaptic boutons. It is hypothesized that impaired membrane signaling regulation via inappropriate presentation of surface cues driving glial phagocytosis prevents appropriate activity-dependent synaptic pruning/refinement.
FIGURE 3
FIGURE 3
Synaptomatrix trans-synaptic signaling defects in the Drosophila FXS model. Diagram summarizing a new requirement for the secreted matrix metalloproteinase 1 (MMP1) during activity-dependent synaptic remodeling. (Top) In wildtype animals, an activity-dependent FMRP mechanism is required for neural activity to drive heparan sulfate proteoglycan (HSPG) dally-like protein (Dlp) localization at the synapse to recruit MMP1, whose enzymatic function is required for activity-dependent ghost bouton formation. HSPG-MMP1 directed proteolysis drives trans-synaptic Wnt Wingless (Wg) signaling for activity-dependent ghost bouton formation. Activity drives presynaptic signaling via the Frizzled-2 (Fz2) Wg receptor inhibiting GSK3β/Shaggy and integrin receptor signaling to control cytoskeleton dynamics, and post-synaptic Fz2 C-terminal cleavage and subsequent Fz2-C nuclear localization regulating new protein synthesis. It is hypothesized that MMP1 may cleave synaptomatrix Laminin to regulate ligand interactions with integrin receptors. (Bottom) In the FXS disease model, without FMRP Dlp and MMP1 are significantly increased at the synapse under basal resting conditions, and their levels do not change with activity manipulations. This activity-insensitivity prevents appropriate activity-dependent regulation of trans-synaptic signaling in the synaptomatrix, likely through inappropriate sequestration of the Wg ligand by HSPG Dlp. It is hypothesized that this defect is also linked to improper integrin signaling regulation.

Similar articles

Cited by

References

    1. Allen M. J., Drummond J. A., Moffat K. G. (1998). Development of the giant fiber neuron of Drosophila melanogaster. J. Comp. Neurol. 397 519–531. 10.1002/(SICI)1096-9861(19980810)397:4<519::AID-CNE5>3.0.CO;2-4 - DOI - PubMed
    1. Antar L. N., Afroz R., Dictenberg J. B., Carroll R. C., Bassell G. J. (2004). Metabotropic glutamate receptor activation regulates Fragile X mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J. Neurosci. 24 2648–2655. 10.1523/JNEUROSCI.0099-04.2004 - DOI - PMC - PubMed
    1. Ascano M., Mukherjee N., Bandaru P., Miller J. B., Nusbaum J. D., Corcoran D. L., et al. (2012). FMRP targets distinct mRNA sequence elements to regulate protein expression. Nature 492 382–386. 10.1038/nature11737 - DOI - PMC - PubMed
    1. Aso Y., Sitaraman D., Ichinose T., Kaun K. R., Vogt K., Belliart-Guérin G., et al. (2014). Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. eLife 3:e04580. 10.7554/eLife.04580 - DOI - PMC - PubMed
    1. Ataman B., Ashley J., Gorczyca M., Ramachandran P., Fouquet W., Sigrist S. J., et al. (2008). Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron 57 705–718. 10.1016/j.neuron.2008.01.026 - DOI - PMC - PubMed

LinkOut - more resources