Applications of Alternative Nucleases in the Age of CRISPR/Cas9
- PMID: 29186020
- PMCID: PMC5751168
- DOI: 10.3390/ijms18122565
Applications of Alternative Nucleases in the Age of CRISPR/Cas9
Abstract
Breakthroughs in the development of programmable site-specific nucleases, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), meganucleases (MNs), and most recently, the clustered regularly interspaced short palindromic repeats (CRISPR) associated proteins (including Cas9) have greatly enabled and accelerated genome editing. By targeting double-strand breaks to user-defined locations, the rates of DNA repair events are greatly enhanced relative to un-catalyzed events at the same sites. However, the underlying biology of each genome-editing nuclease influences the targeting potential, the spectrum of off-target cleavages, the ease-of-use, and the types of recombination events at targeted double-strand breaks. No single genome-editing nuclease is optimized for all possible applications. Here, we focus on the diversity of nuclease domains available for genome editing, highlighting biochemical properties and the potential applications that are best suited to each domain.
Keywords: CRISPR/Cas9; FokI; GIY-YIG nuclease domain; TALEN; ZFN; dimeric nuclease; monomeric nuclease.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
Similar articles
-
Basics of genome editing technology and its application in livestock species.Reprod Domest Anim. 2017 Aug;52 Suppl 3:4-13. doi: 10.1111/rda.13012. Reprod Domest Anim. 2017. PMID: 28815851 Review.
-
Expanding the targeting scope of FokI-dCas nuclease systems with SpRY and Mb2Cas12a.Biotechnol J. 2022 Jul;17(7):e2100571. doi: 10.1002/biot.202100571. Epub 2022 Apr 14. Biotechnol J. 2022. PMID: 35377968
-
Construction and Evaluation of Zinc Finger Nucleases.Methods Mol Biol. 2023;2637:1-25. doi: 10.1007/978-1-0716-3016-7_1. Methods Mol Biol. 2023. PMID: 36773134
-
A beginner's guide to gene editing.Exp Physiol. 2018 Apr 1;103(4):439-448. doi: 10.1113/EP086047. Epub 2018 Jan 25. Exp Physiol. 2018. PMID: 29282799 Review.
-
TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.Methods Cell Biol. 2016;135:107-20. doi: 10.1016/bs.mcb.2016.03.005. Epub 2016 Apr 7. Methods Cell Biol. 2016. PMID: 27443922
Cited by
-
Yeast genetic interaction screens in the age of CRISPR/Cas.Curr Genet. 2019 Apr;65(2):307-327. doi: 10.1007/s00294-018-0887-8. Epub 2018 Sep 25. Curr Genet. 2019. PMID: 30255296 Free PMC article. Review.
-
Genome Editing: A Promising Approach for Achieving Abiotic Stress Tolerance in Plants.Int J Genomics. 2022 Apr 15;2022:5547231. doi: 10.1155/2022/5547231. eCollection 2022. Int J Genomics. 2022. PMID: 35465040 Free PMC article. Review.
-
CRISPR/Cas9 System: A Potential Tool for Genetic Improvement in Floricultural Crops.Mol Biotechnol. 2022 Dec;64(12):1303-1318. doi: 10.1007/s12033-022-00523-y. Epub 2022 Jun 25. Mol Biotechnol. 2022. PMID: 35751797 Free PMC article. Review.
-
Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in Saccharomyces cerevisiae.Front Bioeng Biotechnol. 2022 May 30;10:924914. doi: 10.3389/fbioe.2022.924914. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35706506 Free PMC article. Review.
-
Practical Approaches for the Yeast Saccharomyces cerevisiae Genome Modification.Int J Mol Sci. 2023 Jul 26;24(15):11960. doi: 10.3390/ijms241511960. Int J Mol Sci. 2023. PMID: 37569333 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources