Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jan 5:279:171-176.
doi: 10.1016/j.cbi.2017.11.017. Epub 2017 Nov 26.

Xanthine-derived KMUP-1 reverses glucotoxicity-activated Kv channels through the cAMP/PKA signaling pathway in rat pancreatic β cells

Affiliations

Xanthine-derived KMUP-1 reverses glucotoxicity-activated Kv channels through the cAMP/PKA signaling pathway in rat pancreatic β cells

Chien-Hsing Lee et al. Chem Biol Interact. .

Abstract

Hyperglycemia-associated glucotoxicity induces β-cell dysfunction and a reduction in insulin secretion. Voltage-dependent K+ (Kv) channels in pancreatic β-cells play a key role in glucose-dependent insulin secretion. KMUP-1, a xanthine derivative, has been demonstrated to modulate Kv channel activity in smooth muscles; however, the role of KMUP-1 in glucotoxicity-activated Kv channels in pancreatic β-cells remains unclear. In this study we examined the mechanisms by which KMUP-1 could inhibit high glucose (25 mM) activated Kv currents (IKv) in pancreatic β-cells. Pancreatic β-cells were isolated from Wistar rats and IKv was monitored by perforated patch-clamp recording. The peak IKv in high glucose-treated β-cells was ∼1.4-fold greater than for normal glucose (5.6 mM). KMUP-1 (1, 10, 30 μM) prevented high glucose-stimulated IKv in a concentration-dependent manner. Reduction of high glucose-activated IKv was also found for protein kinase A (PKA) activator 8-Br-cAMP (100 μM). Additionally, KMUP-1 (30 μM) current inhibition was reversed by the PKA inhibitor H-89 (1 μM). Otherwise, pretreatment with the PKC activator or inhibitor had no effect on IKv in high glucose exposure. In conclusion, glucotoxicity-diminished insulin secretion was due to IKv activation. KMUP-1 attenuated high glucose-stimulated IKv via the PKA but not the PKC signaling pathway. This finding provides evidence that KMUP-1 might be a promising agent for treating hyperglycemia-induced insulin resistance.

Keywords: Glucotoxicity; Insulin; KMUP-1; Kv channels; Pancreatic β-cells; Protein kinase A.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources