Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2017 Nov 25;25(1):114.
doi: 10.1186/s13049-017-0455-0.

S100A8/A9 and sRAGE kinetic after polytrauma; an explorative observational study

Affiliations
Observational Study

S100A8/A9 and sRAGE kinetic after polytrauma; an explorative observational study

Philippe Joly et al. Scand J Trauma Resusc Emerg Med. .

Abstract

Background: Following tissue injury after trauma, the activation of innate immune pathways results in systemic inflammation, organ failure and an increased risk of infections. The objective of this study was to characterize the kinetics of the S100A8/S100A9 complex, a new-recognized alarmin, as well as its soluble receptor sRAGE, over time after trauma as potential early biomarkers of the risk of organ damage.

Methods: We collected comprehensive data from consenting patients admitted to an ICU following severe trauma. The blood samples were taken at Day 0 (admission), Day1, 3 and 5 S100A8/A9 and sRAGE were measured by ELISA. Biomarkers levels were reported as median (IQR).

Results: Thirty-eight patients sustaining in majority a blunt trauma (89%) with a median ISS of 39 were included. In this cohort, the S100A8/A9 complex increased significantly over time (p = 0.001), but its levels increment over time (D0 to D5) was significantly smaller in patients developing infection (7.6 vs 40.1 mcg/mL, p = 0.011). The circulating level of sRAGE circulating levels decreased over time (p < 0.0001) and was higher in patients who remained in shock on day 3 (550 vs 918 pg/mL; p = 0.02) or 5 (498 vs 644 pg/mL; p = 0.045). Admission sRAGE levels were significantly higher in non-survivors (1694 vs 745 pg/mL; p = 0.015) and was higher in patients developing renal failure (1143 vs 696 pg/mL, p = 0.011).

Discussion: Our findings reveal an interesting association between the biomarker S100A8/9 least increase over time and the presence of infectious complication after trauma. We describe that the sRAGE decline over time is in relation with shock and markers of ischemic injury. We also confirm the association of sRAGE levels measured at admission with mortality and the development of renal failure.

Conclusions: This work illustrates the importance of following the circulating level of biomarker overtime. The utilization of S1008/9 as a tool to stratify infection risk and trigger early interventions need to be validated prospectively.

Keywords: Calgranulines; Infection; Inflammation; Organ failure; S100; Trauma; sRAGE.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The local Institutional Research Ethics Board approved the study (REB#09–183), and approved a delayed consent model. Written informed consent was obtained from the legally authorized representative within 72 h or the trauma and from the patient him/herself when capacity had recovered.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Time course of sRAGE and S100A8/9 expression over time
Fig. 2
Fig. 2
Infection and increase of S100A8/9 over time (D0-D5)

Similar articles

Cited by

References

    1. Prin M, Li G. Complications and in-hospital mortality in trauma patients treated in intensive care units in the United States, 2013. Inj Epidemiol. 2016;3:18. doi: 10.1186/s40621-016-0084-5. - DOI - PMC - PubMed
    1. TS F, Jing R, McFaull SR, Cusimano MD. Recent trends in hospitalization and in-hospital mortality associated with traumatic brain injury in Canada: a nationwide, population-based study. J Trauma Acute Care Surg. 2015;79:449–454. doi: 10.1097/TA.0000000000000733. - DOI - PubMed
    1. Frohlich M, Lefering R, Probst C, Paffrath T, Schneider MM, Maegele M, et al. Epidemiology and risk factors of multiple-organ failure after multiple trauma: an analysis of 31,154 patients from the TraumaRegister DGU. J Trauma Acute Care Surgery. 2014;76:921–7–discussion927–8. - PubMed
    1. Wafaisade A, Lefering R, Bouillon B, Sakka SG, Thamm OC, Paffrath T, et al. Epidemiology and risk factors of sepsis after multiple trauma: an analysis of 29,829 patients from the trauma registry of the German Society for Trauma Surgery. Crit Care Med. 2011;39:621–628. doi: 10.1097/CCM.0b013e318206d3df. - DOI - PubMed
    1. Ulvik A, Kvale R, Wentzel-Larsen T, Flaatten H. Multiple organ failure after trauma affects even long-term survival and functional status. Crit Care. 2007;11:R95. doi: 10.1186/cc6111. - DOI - PMC - PubMed

Publication types

LinkOut - more resources