Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Dec 1:36:229-237.
doi: 10.1016/j.phymed.2017.10.006. Epub 2017 Oct 7.

Pro-angiogenic effects of Ilexsaponin A1 on human umbilical vein endothelial cells in vitro and zebrafish in vivo

Affiliations

Pro-angiogenic effects of Ilexsaponin A1 on human umbilical vein endothelial cells in vitro and zebrafish in vivo

Jingjing Li et al. Phytomedicine. .

Abstract

Background: Ilexsaponin A1 is the major bioactive ingredient of Ilex pubescens Hook. et Arn. This plant has been conventionally used in Traditional Chinese Medicine for the treatment of cardiovascular diseases including stroke, coronary arterial disease, and peripheral vascular diseases.

Purpose: To investigate the pro-angiogenic effect of Ilexsaponin A1 and its mechanism of action.

Study design: Human umbilical vein endothelial cells (HUVECs) and transgenic zebrafish Tg(fli1:EGFP) were employed as an in vitro and in vivo model respectively.

Methods: Pro-angiogenic effects of Ilexsaponin A1 were examined by assessing endothelial cell proliferation, migration, invasion and tube formation. The mechanism of pro-angiogenic effects was investigated by measuring the expression level of various signalling proteins. Furthermore, vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor II (VRI)-induced vascular insufficient transgenic zebrafish model was used to confirm the results of the HUVECs results in vivo.

Results: Ilexsaponin A1 significantly promoted cell proliferation, migration, invasion and tube formation in HUVECs, and rescued blood vessel loss in VRI-induced vascular insufficient zebrafish. Ilexsaponin A1 upregulated p-Akt, p-mTOR, p-Src, p-FAK, p-MEK, and p-Erk1/2 in HUVECs.

Conclusion: This study showed that Ilexsaponin A1 exhibits pro-angiogenic activity in HUVECs and VRI-induced vascular insufficient zebrafish, probably by activating Akt/mTOR, MAPK/ERK and Src- and FAK-dependent signalling pathways. The findings suggest that Ilexsaponin A1 and probably I. pubescens, a major source of Ilexsaponin A1, could be developed as a potential therapeutic agent for preventing or treating cardiovascular diseases and/or other diseases related to vascular insufficiency.

Keywords: Endothelial cells; Ilex pubescens; Ilexsaponin A1; Pro-angiogenesis; Zebrafish.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources