Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017:1015:241-264.
doi: 10.1007/978-3-319-62817-2_13.

Progenitors in the Ependyma of the Spinal Cord: A Potential Resource for Self-Repair After Injury

Affiliations
Review

Progenitors in the Ependyma of the Spinal Cord: A Potential Resource for Self-Repair After Injury

Nicolás Marichal et al. Adv Exp Med Biol. 2017.

Abstract

Traumatic injury of the spinal cord leads to devastating conditions that affect ~2.5 million people worldwide. This is because the mammalian spinal cord reacts to injury with only limited endogenous repair. Functional restoration requires the replacement of lost cells, the growth and navigation of regenerating axons on a permissive scaffold and axon re-myelination. The manipulation of endogenous spinal stem cells is regarded as a potential strategy to restore function. For this type of therapy it is necessary to determine the molecular and functional mechanisms regulating the proliferation, migration and differentiation of adult spinal progenitors. The spinal cord of animal models in which self-repair normally occurs may provide some clues. Salamanders, some fish and turtles regenerate their spinal cord after massive injury, achieving substantial functional recovery. This regeneration is orchestrated by progenitors that line the central canal (CC). Although mammals have lost the ability for self-repair, some cells in the CC react to injury by proliferating and migrating toward the lesion, where most become astrocytes in the core of the scar. Thus, CC-contacting progenitors in mammals have "latent" programs for endogenous repair of the spinal cord. Progenitor-like cells in the CC are functionally organized in lateral and midline domains, with heterogeneous molecular and membrane properties that represent targets for modulation. Understanding the mechanisms by which CC-can be manipulated will give valuable clues for endogenous spinal cord repair leading to successful functional recovery.

Keywords: Ependyma; Neural plasticity; Neural stem cells; Regeneration; Spinal cord injury; Spinal progenitors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources