Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Aug 29:8:1602.
doi: 10.3389/fmicb.2017.01602. eCollection 2017.

Integrated Translatome and Proteome: Approach for Accurate Portraying of Widespread Multifunctional Aspects of Trichoderma

Affiliations
Review

Integrated Translatome and Proteome: Approach for Accurate Portraying of Widespread Multifunctional Aspects of Trichoderma

Vivek Sharma et al. Front Microbiol. .

Abstract

Genome-wide studies of transcripts expression help in systematic monitoring of genes and allow targeting of candidate genes for future research. In contrast to relatively stable genomic data, the expression of genes is dynamic and regulated both at time and space level at different level in. The variation in the rate of translation is specific for each protein. Both the inherent nature of an mRNA molecule to be translated and the external environmental stimuli can affect the efficiency of the translation process. In biocontrol agents (BCAs), the molecular response at translational level may represents noise-like response of absolute transcript level and an adaptive response to physiological and pathological situations representing subset of mRNAs population actively translated in a cell. The molecular responses of biocontrol are complex and involve multistage regulation of number of genes. The use of high-throughput techniques has led to rapid increase in volume of transcriptomics data of Trichoderma. In general, almost half of the variations of transcriptome and protein level are due to translational control. Thus, studies are required to integrate raw information from different "omics" approaches for accurate depiction of translational response of BCAs in interaction with plants and plant pathogens. The studies on translational status of only active mRNAs bridging with proteome data will help in accurate characterization of only a subset of mRNAs actively engaged in translation. This review highlights the associated bottlenecks and use of state-of-the-art procedures in addressing the gap to accelerate future accomplishment of biocontrol mechanisms.

Keywords: active mRNA; integrated omic; regulation; transcripts; translatome.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Schematic flow of genetic information from genome to proteome level. A- Relationship of different omic approaches in Trichoderma–plant–plant pathogen interaction. B- Hierarchal relationship of total gene predicted using stacked ven diagram in the genome to the total mRNA transcribed (transcriptome) representing both stable and highly active mRNAs population under a stress response. Here depending upon the conditions and alternate splicing a > b > c > d or a > b > c = d or rarely a >b = c=d; a > b = c < d.
FIGURE 2
FIGURE 2
Pictorial representation of total mRNA transcripts, active mRNA involved in protein and bioactive metabolites synthesis during interaction with plant or plant pathogens. The figure explains that transcriptome based study in general represents a higher level of mRNA, compared to total translatome which represents only ribosomal loaded active mRNAs during interaction.
FIGURE 3
FIGURE 3
The experimental procedure of transcriptome and translatome for genome wide studies. In translatome ribosomal loaded or protected fragments of RNA are size or affinity fractionated, recovered, and ligated to adaptors for reverse transcription, amplification, and high-throughput RNA-seq whereas in transcriptome complete mRNA is used for subsequent analysis.

Similar articles

Cited by

References

    1. Al-Ani L., Salleh B., Ghazali A. H. A. (2013). “Biocontrol of Fusarium wilt of banana by Trichoderma spp,” in Proceedings of the Conference Paper International Symposium on Tropical Fungi (ISTF) IPB International Convention Center Bogor.
    1. Alfano G., Ivey M. L. L., Cakir C., Bos J. I. B., Miller S. A., Madden L. V., et al. (2007). Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97 429–437. 10.1094/PHYTO-97-4-0429 - DOI - PubMed
    1. Anke H., Kinn J., Bergquist K.-E., Sterner O. (1991). Production of siderophores by strains of the genus Trichoderma, isolation and characterization of the new lipophilic coprogen derivative, palmitoylcoprogen. Biol. Met. 4 176–180. 10.1007/BF01141311 - DOI
    1. Arvas M., Pakula T., Lanthaler K., Saloheimo M., Valkonen M., Suortti T., et al. (2006). Common features and interesting differences in transcriptional responses to secretion stress in the fungi Trichoderma reesei and Saccharomyces cerevisiae. BMC Genomics 7:32 10.1186/1471-2164-7-32 - DOI - PMC - PubMed
    1. Atanasova L., Crom S. L., Gruber S., Coulpier F., Seidl-Seiboth V., Kubicek C. P., et al. (2013). Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics 14:121 10.1186/1471-2164-14-121 - DOI - PMC - PubMed

LinkOut - more resources