Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jun 7;16(1):100.
doi: 10.1186/s12943-017-0670-3.

Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development

Affiliations
Review

Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development

Hua-Fu Zhao et al. Mol Cancer. .

Abstract

Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary tumor in the central nervous system. One of the most widely used chemotherapeutic drugs for GBM is temozolomide, which is a DNA-alkylating agent and its efficacy is dependent on MGMT methylation status. Little progress in improving the prognosis of GBM patients has been made in the past ten years, urging the development of more effective molecular targeted therapies. Hyper-activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway is frequently found in a variety of cancers including GBM, and it plays a central role in the regulation of tumor cell survival, growth, motility, angiogenesis and metabolism. Numerous PI3K inhibitors including pan-PI3K, isoform-selective and dual PI3K/mammalian target of rapamycin (mTOR) inhibitors have exhibited favorable preclinical results and entered clinical trials in a range of hematologic malignancies and solid tumors. Furthermore, combination of inhibitors targeting PI3K and other related pathways may exert synergism on suppressing tumor growth and improving patients' prognosis. Currently, only a handful of PI3K inhibitors are in phase I/II clinical trials for GBM treatment. In this review, we focus on the importance of PI3K/Akt pathway in GBM, and summarize the current development of PI3K inhibitors alone or in combination with other inhibitors for GBM treatment from preclinical to clinical studies.

Keywords: GBM; Glioblastoma; PI3K; mTOR.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Schematic diagram of PI3K/Akt/mTOR signaling pathway and relevant PI3K inhibitors. When the growth factors bind to their corresponding RTKs, the regulatory isoform of PI3K (p85) binds to RTKs and relieves its inhibition on the catalytic isoform (p110), leading to the activation of PI3K. PI3K gives rise to the production of the lipid messenger PIP3 from PIP2, which can be reversed by the tumor suppressor PTEN. Subsequently, PIP3 binds to the PH domain of Akt and recruits Akt to the plasma membrane. PDK-1 is also recruited by PIP3 to the plasma membrane through its PH domain, and then phosphorylates Akt at Thr308. Akt is completely activated through phosphorylation at Ser473 by mTORC2 (PDK-2). PHLPP is able to dephosphorylate Akt at Ser473. Activated Akt phosphorylates a variety of downstream pathway molecules to facilitate tumor cell survival, proliferation, migration, invasion and glucose metabolism. The Akt downstream mTORC1 axis also regulates protein synthesis and cell growth. The tumor suppressor TSC1 and TSC2 are two substrates of Akt, and their phosphorylation leads to the blockade of their inhibitory effects on mTORC1. Activated mTORC1 then phosphorylates 4EBP1 and p70 S6 K, resulting in the initiation of protein translation. Activation of mTORC1 also triggers a negative feedback to suppress Akt phosphorylation. Numerous PI3K inhibitors have been developed to target PI3K/Akt/mTOR signaling. Pan-PI3K and isoform-selective PI3K inhibitors suppress the activities of p110 catalytic isoforms, while PI3K/mTOR inhibitors block the activation of both p110 and mTORC1/2

Similar articles

Cited by

References

    1. Dolecek TA, Propp JM, Stroup NE, Kruchko C. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology. 2012;14(Suppl 5):1–49. doi: 10.1093/neuonc/nos218. - DOI - PMC - PubMed
    1. Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology of glioma. Nat Clin Pract Neurol. 2006;2(9):494–503. doi: 10.1038/ncpneuro0289. - DOI - PubMed
    1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–996. doi: 10.1056/NEJMoa043330. - DOI - PubMed
    1. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–477. doi: 10.1016/j.cell.2013.09.034. - DOI - PMC - PubMed
    1. Frederick L, Wang XY, Eley G, James CD. Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res. 2000;60(5):1383–1387. - PubMed

MeSH terms

Substances