Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 May 10;9(5):477.
doi: 10.3390/nu9050477.

The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action

Affiliations
Review

The Neuroprotective Effects of Phenolic Acids: Molecular Mechanism of Action

Dominik Szwajgier et al. Nutrients. .

Abstract

The neuroprotective role of phenolic acids from food has previously been reported by many authors. In this review, the role of phenolic acids in ameliorating depression, ischemia/reperfusion injury, neuroinflammation, apoptosis, glutamate-induced toxicity, epilepsy, imbalance after traumatic brain injury, hyperinsulinemia-induced memory impairment, hearing and vision disturbances, Parkinson's disease, Huntington's disease, anti-amyotrophic lateral sclerosis, Chagas disease and other less distributed diseases is discussed. This review covers the in vitro, ex vivo and in vivo studies concerning the prevention and treatment of neurological disorders (on the biochemical and gene expression levels) by phenolic acids.

Keywords: benzoic acids; central nervous system; cinnamic acids; glial cell; neuroinflammation; neurological disorder; neuron; neuroprotection; polyphenols.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Chemical structures of phenolic acids discussed in this work.

Similar articles

Cited by

References

    1. Mattila P., Hellström J., Törrönen R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006;54:7193–7199. doi: 10.1021/jf0615247. - DOI - PubMed
    1. Grosso G., Estruch R. Nut consumption and age-related disease. Maturitas. 2016;84:11–16. doi: 10.1016/j.maturitas.2015.10.014. - DOI - PubMed
    1. Crozier A., Jaganath I.B., Clifford M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009;26:1001–1043. doi: 10.1039/b802662a. - DOI - PubMed
    1. Van Hung P. Phenolic compounds of cereals and their antioxidant capacity. Crit. Rev. Food Sci. Nutr. 2016;56:25–35. doi: 10.1080/10408398.2012.708909. - DOI - PubMed
    1. Liu X., Yan Y., Li F., Zhang D. Fruit and vegetable consumption and the risk of depression: A meta-analysis. Nutrition. 2016;32:296–302. doi: 10.1016/j.nut.2015.09.009. - DOI - PubMed

LinkOut - more resources