Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul 1;18(7):732-741.
doi: 10.1093/ehjci/jew314.

Whole heart detailed and quantitative anatomy, myofibre structure and vasculature from X-ray phase-contrast synchrotron radiation-based micro computed tomography

Affiliations

Whole heart detailed and quantitative anatomy, myofibre structure and vasculature from X-ray phase-contrast synchrotron radiation-based micro computed tomography

Anna Gonzalez-Tendero et al. Eur Heart J Cardiovasc Imaging. .

Abstract

Background: While individual cardiac myocytes only have a limited ability to shorten, the heart efficiently pumps a large volume-fraction thanks to a cell organization in a complex 3D fibre structure. Subclinical subtle cardiac structural remodelling is often present before symptoms arise. Understanding and early detection of these subtle changes is crucial for diagnosis and prevention. Additionally, personalized computational modelling requires knowledge on the multi-scale structure of the whole heart and vessels.

Methods and results: We developed a rapid acquisition together with visualization and quantification methods of the integrated microstructure of whole in-vitro rodents hearts using synchrotron based X-ray phase-contrast tomography. These images are formed not only by X-ray absorption by the tissue but also by wave propagation phenomena, enhancing structural information, thus allowing to raise tissue contrast to an unprecedented level. We used a (ex-vivo) normal rat heart and fetal rabbit hearts suffering intrauterine growth restriction as a model of subclinical cardiac remodelling to illustrate the strengths and potential of the technique. For comparison, histology and diffusion tensor magnetic resonance imaging was performed.

Conclusions: We have developed a novel, high resolution, image acquisition, and quantification approach to study a whole in-vitro heart at myofibre resolution, providing integrated 3D structural information at microscopic level without any need of tissue slicing and processing. This superior imaging approach opens up new possibilities for a systems approach towards analysing cardiac structure and function, providing rapid acquisition of quantitative microstructure of the heart in a near native state.

Keywords: coronary vasculature; myocardial remodelling; myofibre structure; synchrotron phase-contrast CT.

PubMed Disclaimer

Comment in

Similar articles

Cited by

LinkOut - more resources