For and Against Methodologies: Some Perspectives on Recent Causal and Statistical Inference Debates
- PMID: 28220361
- DOI: 10.1007/s10654-017-0230-6
For and Against Methodologies: Some Perspectives on Recent Causal and Statistical Inference Debates
Abstract
I present an overview of two methods controversies that are central to analysis and inference: That surrounding causal modeling as reflected in the "causal inference" movement, and that surrounding null bias in statistical methods as applied to causal questions. Human factors have expanded what might otherwise have been narrow technical discussions into broad philosophical debates. There seem to be misconceptions about the requirements and capabilities of formal methods, especially in notions that certain assumptions or models (such as potential-outcome models) are necessary or sufficient for valid inference. I argue that, once these misconceptions are removed, most elements of the opposing views can be reconciled. The chief problem of causal inference then becomes one of how to teach sound use of formal methods (such as causal modeling, statistical inference, and sensitivity analysis), and how to apply them without generating the overconfidence and misinterpretations that have ruined so many statistical practices.
Keywords: Bias; Causal inference; Causation; Counterfactuals; Effect estimation; Hypothesis testing; Intervention analysis; Modeling; Potential outcomes; Research synthesis; Significance testing; Statistical inference.
Similar articles
-
Causal identification: a charge of epidemiology in danger of marginalization.Ann Epidemiol. 2016 Oct;26(10):669-673. doi: 10.1016/j.annepidem.2016.03.013. Epub 2016 Apr 30. Ann Epidemiol. 2016. PMID: 27237595 Review.
-
Causal models and learning from data: integrating causal modeling and statistical estimation.Epidemiology. 2014 May;25(3):418-26. doi: 10.1097/EDE.0000000000000078. Epidemiology. 2014. PMID: 24713881 Free PMC article. Review.
-
Causal evidence in health decision making: methodological approaches of causal inference and health decision science.Ger Med Sci. 2022 Dec 21;20:Doc12. doi: 10.3205/000314. eCollection 2022. Ger Med Sci. 2022. PMID: 36742460 Free PMC article. Review.
-
An introduction to causal inference.Int J Biostat. 2010 Feb 26;6(2):Article 7. doi: 10.2202/1557-4679.1203. Int J Biostat. 2010. PMID: 20305706 Free PMC article. Review.
-
[Comparison of selected causality theories].Gesundheitswesen. 2011 Dec;73(12):880-3. doi: 10.1055/s-0031-1291198. Epub 2011 Dec 22. Gesundheitswesen. 2011. PMID: 22193896 German.
Cited by
-
Opportunities for Epidemiologists in Implementation Science: A Primer.Am J Epidemiol. 2018 May 1;187(5):899-910. doi: 10.1093/aje/kwx323. Am J Epidemiol. 2018. PMID: 29036569 Free PMC article.
-
Understanding Marginal Structural Models for Time-Varying Exposures: Pitfalls and Tips.J Epidemiol. 2020 Sep 5;30(9):377-389. doi: 10.2188/jea.JE20200226. Epub 2020 Jul 18. J Epidemiol. 2020. PMID: 32684529 Free PMC article.
-
On wagging tales about causal inference.Int J Epidemiol. 2017 Aug 1;46(4):1340-1342. doi: 10.1093/ije/dyx086. Int J Epidemiol. 2017. PMID: 28575465 Free PMC article. No abstract available.
-
Interpreting Randomized Controlled Trials.Cancers (Basel). 2023 Sep 22;15(19):4674. doi: 10.3390/cancers15194674. Cancers (Basel). 2023. PMID: 37835368 Free PMC article. Review.
-
Biases arising from linked administrative data for epidemiological research: a conceptual framework from registration to analyses.Eur J Epidemiol. 2022 Dec;37(12):1215-1224. doi: 10.1007/s10654-022-00934-w. Epub 2022 Nov 5. Eur J Epidemiol. 2022. PMID: 36333542 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources