Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 13:14:3.
doi: 10.1186/s12014-017-9137-1. eCollection 2017.

Simultaneous analyses of N-linked and O-linked glycans of ovarian cancer cells using solid-phase chemoenzymatic method

Affiliations

Simultaneous analyses of N-linked and O-linked glycans of ovarian cancer cells using solid-phase chemoenzymatic method

Shuang Yang et al. Clin Proteomics. .

Abstract

Background: Glycans play critical roles in a number of biological activities. Two common types of glycans, N-linked and O-linked, have been extensively analyzed in the last decades. N-glycans are typically released from glycoproteins by enzymes, while O-glycans are released from glycoproteins by chemical methods. It is important to identify and quantify both N- and O-linked glycans of glycoproteins to determine the changes of glycans.

Methods: The effort has been dedicated to study glycans from ovarian cancer cells treated with O-linked glycosylation inhibitor qualitatively and quantitatively. We used a solid-phase chemoenzymatic approach to systematically identify and quantify N-glycans and O-glycans in the ovarian cancer cells. It consists of three steps: (1) immobilization of proteins from cells and derivatization of glycans to protect sialic acids; (2) release of N-glycans by PNGase F and quantification of N-glycans by isobaric tags; (3) release and quantification of O-glycans by β-elimination in the presence of 1-phenyl-3-methyl-5-pyrazolone (PMP).

Results: We used ovarian cancer cell lines to study effect of O-linked glycosylation inhibitor on protein glycosylation. Results suggested that the inhibition of O-linked glycosylation reduced the levels of O-glycans. Interestingly, it appeared to increase N-glycan level in a lower dose of the O-linked glycosylation inhibitor. The sequential release and analyses of N-linked and O-linked glycans using chemoenzymatic approach are a platform for studying N-glycans and O-glycans in complex biological samples.

Conclusion: The solid-phase chemoenzymatic method was used to analyze both N-linked and O-linked glycans sequentially released from the ovarian cancer cells. The biological studies on O-linked glycosylation inhibition indicate the effects of O-glycosylation inhibition to glycan changes in both O-linked and N-linked glycan expression.

Keywords: Chemoenzymatic; Glycomics; Glycoprotein; Solid phase.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Schematic diagram of sequential releases and analyses of N-linked and O-linked glycans via chemoenzymatic method. a Immobilize glycoproteins on solid support. b Modify sialic acids; c release N-glycans using PNGase F; d label N-glycans by the isobaric tags such as QUANTITY via reductive amination; e release O-glycans by β-elimination. The released O-glycans are purified using C18 cartridge and N-glycans are purified using Carbograph SPE column
Fig. 2
Fig. 2
Chemoenzymatic sequential releases of N-glycans and O-glycans from bovine serum-derived fetuin using GIG. a N-glycans were released by PNGase F on solid-phase; b O-glycans were released after N-glycans were released by mild β-elimination in 0.5 M PMP (1-phenyl-3-methyl-5-pyrazolone). The MS spectra was generated by MALDI
Fig. 3
Fig. 3
Sialylated O-glycans of mucin from bovine submaxillary glands (MBS) by MALDI-MS. a The sialic acids that were stabilized by carbodiimide coupling have a significantly increased MS signal; b the sialic acids without modification have low intensity in MALDI-MS. An internal standard (Neurotensin, 20 μM/1 μL) was spiked in the sample. The sialic acid modified glycans have one sodium adduct [Na]+, while native glycans have an extra sodium adduct per sialic acid
Fig. 4
Fig. 4
MS/MS fragmentation of QUANTITY-tagged N-glycans. The N4H5S2 was extracted from OVCAR-3 cells and labeled by QUANTITY. MS/MS was performed by Thermo Orbitrap Mass Spectrometer. When a reporter is lost, the mass is reduced by 176–178 with a “Loss reporter”
Fig. 5
Fig. 5
N-glycan profile of OVCAR-3 cells by LC–ESI–MS/MS. N-glycans were first released after sialic acid modification, and the released N-glycans were labeled using isobaric QUANTITY tags (Quaternary Amine Containing Isobaric Tag for Glycan). The labeled N-glycans were separated using a C18 analytical column (Thermo Scientific Acclaim PepMap, 15 cm). a Oligomannoses eluted from 0 to 10 min, b complex N-glycans eluted from 10 to 20 min, c Complex N-glycans eluted from 20 to 30 min, and d complex and sialylated N-glycans eluted from 30 to 40 min

Similar articles

Cited by

References

    1. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993;3:97–130. doi: 10.1093/glycob/3.2.97. - DOI - PMC - PubMed
    1. Gilgunn S, Conroy PJ, Saldova R, Rudd PM, O’kennedy RJ. Aberrant PSA glycosylation-a sweet predictor of prostate cancer. Nat Rev Urol. 2013;10:99–107. doi: 10.1038/nrurol.2012.258. - DOI - PubMed
    1. Saldova R, Royle L, Radcliffe CM, Hamid UMA, et al. Ovarian cancer is associated with changes in glycosylation in both acute-phase proteins and IgG. Glycobiology. 2007;17:1344–1356. doi: 10.1093/glycob/cwm100. - DOI - PubMed
    1. An HJ, Miyamoto S, Lancaster KS, Kirmiz C, et al. Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer. J Proteome Res. 2006;5:1626–1635. doi: 10.1021/pr060010k. - DOI - PubMed
    1. Ercan A, Cui J, Chatterton DE, Deane KD, et al. Aberrant IgG galactosylation precedes disease onset, correlates with disease activity, and is prevalent in autoantibodies in rheumatoid arthritis. Arthritis Rheum. 2010;62:2239–2248. doi: 10.1002/art.27533. - DOI - PMC - PubMed