Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 6;14(2):431-440.
doi: 10.1021/acs.molpharmaceut.6b00875. Epub 2017 Jan 12.

Salecan-Based pH-Sensitive Hydrogels for Insulin Delivery

Affiliations

Salecan-Based pH-Sensitive Hydrogels for Insulin Delivery

Xiaoliang Qi et al. Mol Pharm. .

Abstract

Stimuli-responsive polymeric hydrogels are promising and appealing delivery vehicles for protein/peptide drugs and have made protein/peptide delivery with both dosage- and spatiotemporal-controlled manners possible. Here a series of new Salecan-based pH-sensitive hydrogels were fabricated for controlled insulin delivery via the graft copolymerization reaction between Salecan and 2-acrylamido-2-methyl-1-propanesulfonic acid. In this study, on one hand, Salecan played a key role in modifying the structure and the pore size of the developing hydrogel. On the other hand, Salecan tuned the water content and the water release rate of the obtained hydrogel, leading to a controllable release rate of the insulin. More importantly, in vitro release experiments validated that the release of insulin from this intelligent system could be also tailored by the environmental pH of the release medium. For SGA2, the amount of encapsulated insulin released at gastric conditions (pH 1.2) was relatively low (about 26.1 wt % in 24 h), while that released at intestinal conditions (pH 7.4) increased significantly (over 50 wt % in 6 h). Furthermore, toxicity assays demonstrated that the designed hydrogel carriers were biocompatible. These characteristics make the Salecan-based hydrogel a promising candidate for protein/peptide drug delivery device.

Keywords: 2-acrylamido-2-methyl-1-propanesulfonic acid; drug delivery; insulin; pH-sensitive hydrogels; salecan.

PubMed Disclaimer

Similar articles

Cited by

Publication types