Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Dec 30;7(1):188.
doi: 10.1186/s13287-016-0440-y.

Nanostructured scaffold as a determinant of stem cell fate

Affiliations
Review

Nanostructured scaffold as a determinant of stem cell fate

Lekshmi Krishna et al. Stem Cell Res Ther. .

Abstract

The functionality of stem cells is tightly regulated by cues from the niche, comprising both intrinsic and extrinsic cell signals. Besides chemical and growth factors, biophysical signals are important components of extrinsic signals that dictate the stem cell properties. The materials used in the fabrication of scaffolds provide the chemical cues whereas the shape of the scaffolds provides the biophysical cues. The effect of the chemical composition of the scaffolds on stem cell fate is well researched. Biophysical signals such as nanotopography, mechanical forces, stiffness of the matrix, and roughness of the biomaterial influence the fate of stem cells. However, not much is known about their role in signaling crosstalk, stem cell maintenance, and directed differentiation. Among the various techniques for scaffold design, nanotechnology has special significance. The role of nanoscale topography in scaffold design for the regulation of stem cell behavior has gained importance in regenerative medicine. Nanotechnology allows manipulation of highly advanced surfaces/scaffolds for optimal regulation of cellular behavior. Techniques such as electrospinning, soft lithography, microfluidics, carbon nanotubes, and nanostructured hydrogel are described in this review, along with their potential usage in regenerative medicine. We have also provided a brief insight into the potential signaling crosstalk that is triggered by nanomaterials that dictate a specific outcome of stem cells. This concise review compiles recent developments in nanoscale architecture and its importance in directing stem cell differentiation for prospective therapeutic applications.

Keywords: Architecture; Biomaterial; Differentiation; Scaffold; Stem cell.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Cellular response to the biophysical microenvironment. Biomaterials with (a) fibrous architecture, (b) nano grooves/ridges, (c) surface roughness and varying nanotopographical features, (d) nanodotted surface, and (e) concave and convex curvatures inside a porous scaffold. These microenvironmental mechanical cues have the ability to influence cell adhesion, alignment, proliferation, differentiation, and migration
Fig. 2
Fig. 2
Schematic representation defining the importance of various scaffold architectures in determining the specific lineage of stem cells. Stem cells cultured on various nanostructured scaffolds yeild different differentiated cell types, such as a bone marrow stem cells grown on nanofibrous PCL scaffold promotes osteogenic fate, b embryonic stem cell cultured on annosclae ridge or groove promote neuronal fate, c tendon stem cells culutred on aligned and random PLLA directed tendon and stellate lineage, respectively, d mesenchymal stem cells on PDMS promote osteogenic as well as adipogenic fate.
Fig. 3
Fig. 3
Various nanoscale platforms for directing stem cell fate. Scaffolds with (a) nanofibrous architecture, (b) soft lithography, (c) hydrogel, and (d) carbon nanotubes. These microenvironmental cues direct stem cell differentiation to a specific lineage

Similar articles

Cited by

References

    1. Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840:2506–19. doi: 10.1016/j.bbagen.2014.01.010. - DOI - PMC - PubMed
    1. Elisseeff J, Ferran A, Hwang S, Varghese S, Zhang Z. The role of biomaterials in stem cell differentiation: applications in the musculoskeletal system. Stem Cells Dev. 2006;15:295–303. doi: 10.1089/scd.2006.15.295. - DOI - PubMed
    1. Feng Y, Borrelli M, Reichl S, Schrader S, Geerling G. Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res. 2014;39:541–52. doi: 10.3109/02713683.2013.853803. - DOI - PubMed
    1. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;2011:19. doi: 10.1155/2011/290602. - DOI
    1. Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev. 2006;12:301–47. doi: 10.1016/S1387-2656(06)12009-8. - DOI - PubMed

Publication types