On the evolutionary trajectories of signal-transducing amyloids in fungi and beyond
- PMID: 27648755
- PMCID: PMC5105908
- DOI: 10.1080/19336896.2016.1228506
On the evolutionary trajectories of signal-transducing amyloids in fungi and beyond
Abstract
In the last decade, multiple reports have established that amyloids can bear important functional roles in a variety of biological processes and in distant taxonomic clades. In filamentous fungi, amyloids are involved in a signal transducing mechanism in which a group of NOD-like receptors (NLRs) controls downstream effector proteins to induce a programmed cell death reaction. A structurally characterized example of fungal signal-transducing amyloid is the prion-forming domain (PFD) of the HET-S toxin from Podospora anserina. Amyloid-mediated programmed cell death is equally reported in metazoans in the context of innate immunity and antiviral response. The cell death reaction, described as programmed necrosis, is dependent on an amyloid-forming RHIM motif (RIP homotypic interaction motif). An evolutionary link between the RHIM and the PFD signaling amyloids has been previously reported. Our recent study ties further the signaling amyloids in fungi and metazoans, reporting a fungal signal-transducing domain with amyloid and prion-like properties, which shows significant sequence similarity to the metazoan RHIM motif. Here, I discuss the expanding class of the signal-transducing amyloids and reflect on the possible evolutionary scenarios of their diversification.
Keywords: HET-S; NLR; RHIM; functional amyloid; prion; programmed cell death; signal-transduction.
Comment on
- doi: 10.1073/pnas.1522361113
Similar articles
-
Partial Prion Cross-Seeding between Fungal and Mammalian Amyloid Signaling Motifs.mBio. 2021 Feb 9;12(1):e02782-20. doi: 10.1128/mBio.02782-20. mBio. 2021. PMID: 33563842 Free PMC article.
-
Diversity of Amyloid Motifs in NLR Signaling in Fungi.Biomolecules. 2017 Apr 13;7(2):38. doi: 10.3390/biom7020038. Biomolecules. 2017. PMID: 28406433 Free PMC article. Review.
-
Signal transduction by a fungal NOD-like receptor based on propagation of a prion amyloid fold.PLoS Biol. 2015 Feb 11;13(2):e1002059. doi: 10.1371/journal.pbio.1002059. eCollection 2015 Feb. PLoS Biol. 2015. PMID: 25671553 Free PMC article.
-
Amyloid Signaling in Filamentous Fungi and Bacteria.Annu Rev Microbiol. 2020 Sep 8;74:673-691. doi: 10.1146/annurev-micro-011320-013555. Epub 2020 Jul 20. Annu Rev Microbiol. 2020. PMID: 32689912 Review.
-
Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis.Proc Natl Acad Sci U S A. 2016 Mar 8;113(10):2720-5. doi: 10.1073/pnas.1522361113. Epub 2016 Feb 22. Proc Natl Acad Sci U S A. 2016. PMID: 26903619 Free PMC article.
Cited by
-
Regulated Forms of Cell Death in Fungi.Front Microbiol. 2017 Sep 21;8:1837. doi: 10.3389/fmicb.2017.01837. eCollection 2017. Front Microbiol. 2017. PMID: 28983298 Free PMC article. Review.
-
Protein Co-Aggregation Related to Amyloids: Methods of Investigation, Diversity, and Classification.Int J Mol Sci. 2018 Aug 4;19(8):2292. doi: 10.3390/ijms19082292. Int J Mol Sci. 2018. PMID: 30081572 Free PMC article. Review.
-
Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective.Front Mol Neurosci. 2021 Jul 1;14:670513. doi: 10.3389/fnmol.2021.670513. eCollection 2021. Front Mol Neurosci. 2021. PMID: 34276304 Free PMC article. Review.
-
Functional Mammalian Amyloids and Amyloid-Like Proteins.Life (Basel). 2020 Aug 21;10(9):156. doi: 10.3390/life10090156. Life (Basel). 2020. PMID: 32825636 Free PMC article. Review.
-
The N-terminal domains of NLR immune receptors exhibit structural and functional similarities across divergent plant lineages.Plant Cell. 2024 Jul 2;36(7):2491-2511. doi: 10.1093/plcell/koae113. Plant Cell. 2024. PMID: 38598645 Free PMC article.
References
-
- Miller G. Neurodegeneration. Could they all be prion diseases? Science 2009; 326:1337-9; PMID:19965731; http://dx.doi.org/10.1126/science.326.5958.1337 - DOI - PubMed
-
- Pham CL, Kwan AH, Sunde M. Functional amyloid: widespread in Nature, diverse in purpose. Essays Biochem 2014; 56:207-19; PMID:25131597; http://dx.doi.org/10.1042/bse0560207 - DOI - PubMed
-
- Blanco LP, Evans ML, Smith DR, Badtke MP, Chapman MR. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 2012; 20:66-73; PMID:22197327; http://dx.doi.org/10.1016/j.tim.2011.11.005 - DOI - PMC - PubMed
-
- Sawyer EB, Claessen D, Gras SL, Perrett S. Exploiting amyloid: how and why bacteria use cross-β fibrils. Biochem Soc Trans 2012; 40:728-34 ; PMID:22817724; http://dx.doi.org/10.1042/BST20120013 - DOI - PubMed
-
- Stephan JS, Fioriti L, Lamba N, Colnaghi L, Karl K, Derkatch IL, Kandel ER. The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton. Cell Rep 2015; 11:1772-85; PMID:26074072; http://dx.doi.org/10.1016/j.celrep.2015.04.060 - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous