Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun 21:6:27771.
doi: 10.1038/srep27771.

Malaria transmission potential could be reduced with current and future climate change

Affiliations

Malaria transmission potential could be reduced with current and future climate change

C C Murdock et al. Sci Rep. .

Abstract

Several studies suggest the potential for climate change to increase malaria incidence in cooler, marginal transmission environments. However, the effect of increasing temperature in warmer regions where conditions currently support endemic transmission has received less attention. We investigate how increases in temperature from optimal conditions (27 °C to 30 °C and 33 °C) interact with realistic diurnal temperature ranges (DTR: ± 0 °C, 3 °C, and 4.5 °C) to affect the ability of key vector species from Africa and Asia (Anopheles gambiae and An. stephensi) to transmit the human malaria parasite, Plasmodium falciparum. The effects of increasing temperature and DTR on parasite prevalence, parasite intensity, and mosquito mortality decreased overall vectorial capacity for both mosquito species. Increases of 3 °C from 27 °C reduced vectorial capacity by 51-89% depending on species and DTR, with increases in DTR alone potentially halving transmission. At 33 °C, transmission potential was further reduced for An. stephensi and blocked completely in An. gambiae. These results suggest that small shifts in temperature could play a substantial role in malaria transmission dynamics, yet few empirical or modeling studies consider such effects. They further suggest that rather than increase risk, current and future warming could reduce transmission potential in existing high transmission settings.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The effects of increasing mean ambient temperature and diurnal temperature range (DTR 0 C, grey bars; DTR 6 C, orange bars; and DTR 9 C, red bars) on measures of vector competence for Anopheles gambiae (left panel) and An. stephensi (right panel): mean oocyst prevalence (A,B), oocyst burdens (C,D), and sporozoite prevalence (E,F). Bars represent standard errors around the mean.
Figure 2
Figure 2
Increasing mean ambient temperature (27 °C, black lines; 30 °C, orange lines; 33 °C, red lines) decreases the cumulative probability of daily survival for both Anopheles gambaie (A) and An. stephensi (B). Variation in diurnal temperature range (DTR 0 C, solid lines; DTR 6 C, hashed lines; DTR 9 C, dotted lines) differentially affects the cumulative probability of daily mosquito survival for each vector species.
Figure 3
Figure 3. The effects of temperature and diurnal temperature range (DTR) on vectorial capacity.
(A) Increasing mean ambient temperature (27, 30 and 33 °C) and DTR of (0, 6, 9 °C) decreases the vectorial capacity of both Anopheles gambiae (grey bars) and An. stephensi (blue bars). (B) When rate summation is used to estimate the predicted additional effects of DTR on biting rate and parasite development, the proportional reduction in vectorial capacity increases with mean ambient temperature and temperature variation. No predictions are available for An. gambiae at 33 °C as vectorial capacity is already zero without additional effects of DTR.

Similar articles

Cited by

References

    1. Parham P. E. et al.. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philos. T. Roy. Soc. B. 370, 1–17, 10.1098/rstb.2013.0551 (2015). - DOI - PMC - PubMed
    1. Mordecai E. A. et al.. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30, 10.1111/ele.12015 (2013). - DOI - PubMed
    1. Siraj A. S. et al.. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343, 1154–1158, 10.1126/science.1244325 (2014). - DOI - PubMed
    1. Pascual M., Ahumada J. A., Chaves L. F., Rodó X. & Bouma M. Malaria resurgence in the East African highlands: temperature trends revisited. Proc. Natl. Acad. Sci. USA 103, 5829–5834, 10.1073/pnas.0508929103 (2006). - DOI - PMC - PubMed
    1. Paaijmans K. P., Read A. F. & Thomas M. B. Understanding the link between malaria risk and climate. Proc. Natl. Acad. Sci. USA 106, 13844–13849, 10.1073/pnas.0903423106 (2009). - DOI - PMC - PubMed

Publication types