Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jun 17;7(6):29.
doi: 10.3390/genes7060029.

Role of Telomerase in the Cardiovascular System

Affiliations
Review

Role of Telomerase in the Cardiovascular System

Mark Zurek et al. Genes (Basel). .

Abstract

Aging is one major risk factor for the incidence of cardiovascular diseases and the development of atherosclerosis. One important enzyme known to be involved in aging processes is Telomerase Reverse Transcriptase (TERT). After the discovery of the enzyme in humans, TERT had initially only been attributed to germ line cells, stem cells and cancer cells. However, over the last few years it has become clear that TERT is also active in cells of the cardiovascular system including cardiac myocytes, endothelial cells, smooth muscle cells and fibroblasts. Interference with the activity of this enzyme greatly contributes to cardiovascular diseases. This review will summarize the findings on the role of TERT in cardiovascular cells. Moreover, recent findings concerning TERT in different mouse models with respect to cardiovascular diseases will be described. Finally, the extranuclear functions of TERT will be covered within this review.

Keywords: Telomerase Reverse Transcriptase; aging; cardiovascular cells.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Regulation and functions of TERT in the heart. (A) TERT is present in cardiac myocytes, endothelial cells and fibroblasts of the adult heart. Heart injury as well as physical exercise increase TERT expression and Telomerase activity; (B) TERT deficiency completely blunts the protective effects of voluntary running in the heart. Increasing TERT levels in the heart using transgenic or viral approaches improves cardiac outcome and significantly reduces mortality.
Figure 2
Figure 2
Interconnection between TERT and eNOS. TERT and eNOS mutually reinforce their activities in the endothelium. One common upstream regulator is Akt1. Statins, Angiotensin 1-7 (Ang1-7) and pioglitazone increase not only NO production, but also Telomerase activity.

Similar articles

Cited by

References

    1. Blasco M.A. Telomeres and human disease: Ageing, cancer and beyond. Nat. Rev. Genet. 2005;6:611–622. doi: 10.1038/nrg1656. - DOI - PubMed
    1. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 1965;37:614–636. doi: 10.1016/0014-4827(65)90211-9. - DOI - PubMed
    1. Bodnar A.G., Ouellette M., Frolkis M., Holt S.E., Chiu C.P., Morin G.B., Harley C.B., Shay J.W., Lichtsteiner S., Wright W.E. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–352. doi: 10.1126/science.279.5349.349. - DOI - PubMed
    1. Forsyth N.R., Wright W.E., Shay J.W. Telomerase and differentiation in multicellular organisms: Turn it off, turn it on, and turn it off again. Differentiation. 2002;69:188–197. doi: 10.1046/j.1432-0436.2002.690412.x. - DOI - PubMed
    1. Minamino T., Kourembanas S. Mechanisms of telomerase induction during vascular smooth muscle cell proliferation. Circ. Res. 2001;89:237–243. doi: 10.1161/hh1501.094267. - DOI - PubMed

LinkOut - more resources