Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 May 13:7:715.
doi: 10.3389/fmicb.2016.00715. eCollection 2016.

Bioactive Molecules Released From Cells Infected with the Human Cytomegalovirus

Affiliations
Review

Bioactive Molecules Released From Cells Infected with the Human Cytomegalovirus

Anna Luganini et al. Front Microbiol. .

Abstract

Following primary infection in humans, the human cytomegalovirus (HCMV) persists in a latent state throughout the host's lifetime despite a strong and efficient immune response. If the host experiences some form of immune dysregulation, such as immunosuppression or immunodeficiency, HCMV reactivates, thereby emerging from latency. Thus, in the absence of effective functional immune responses, as occurs in immunocompromised or immunoimmature individuals, both HCMV primary infections and reactivations from latency can cause significant morbidity and mortality. However, even in immunocompetent hosts, HCMV represents a relevant risk factor for the development of several chronic inflammatory diseases and certain forms of neoplasia. HCMV infection may shift between the lytic and latent state, regulated by a delicate and intricate balance between virus-mediated immunomodulation and host immune defenses. Indeed, HCMV is a master in manipulating innate and adaptive host defense pathways, and a large portion of its genome is devoted to encoding immunomodulatory proteins; such proteins may thus represent important virulence determinants. However, the pathogenesis of HCMV-related diseases is strengthened by the activities of bioactive molecules, of both viral and cellular origin, that are secreted from infected cells and collectively named as the secretome. Here, we review the state of knowledge on the composition and functions of HCMV-derived secretomes. In lytic infections of fibroblasts and different types of endothelial cells, the majority of HCMV-induced secreted proteins act in a paracrine fashion to stimulate the generation of an inflammatory microenvironment around infected cells; this may lead to vascular inflammation and angiogenesis that, in turn, foster HCMV replication and its dissemination through host tissues. Conversely, the HCMV secretome derived from latently infected hematopoietic progenitor cells induces an immunosuppressive extracellular environment that interferes with immune recognition and elimination of latently infected cells, thereby promoting viral persistence. Characterization of the composition and biological activities of HCMV secretomes from different types of infected cells will lay the foundation for future advances in our knowledge about the pathogenesis HCMV diseases and may provide targets for the development of novel antiviral intervention strategies.

Keywords: angiogenesis; bioactive molecules; chronic disease; human cytomegalovirus; immunoevasion; latency; lytic infection; secretome.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Regulation of HCMV MIEP activity during lytic and latent infections. (A) In cells permissive to lytic infection, the MIEP is associated with acetylated histones (Ac; H4 and H3) and many constitutive and inducible cellular transcription factors (NF-κB, CREB, AP1, SRF, and Elk-1) bind to cognate binding sites to activate IE genes transcription. (B) In latently infected cells, cellular transcriptional repressors (YY1, ERF, and Gfi-1) bind and recruit histone deacetylases (HDAC1) and methyltransferases (HMT) to the MIEP. The reduced content of acetylated H4 and the increase of dimethylated H3 histones (Me), promotes recruitment of the silencing protein (heterochromatin protein 1 -HP1β-), thus determining repression of the MIEP transcriptional activity.
FIGURE 2
FIGURE 2
The role of endothelial cell-derived HCMV secretome in accelerating vascular diseases. Productive HCMV infection of endothelial cells leads to the release of many bioactive proteins that can modify the microenvironment around host cells. The ability of these secreted factors to promote neo-vessel formation, wound healing, and the inflammatory response may help explain the role of HCMV infection in the development of HCMV-associated vascular diseases.
FIGURE 3
FIGURE 3
Human cytomegalovirus (HCMV)-derived secretome and virus latency. HCMV latency is established in bone marrow cells and is carried out in CD34+ hematopoietic progenitor cells and in CD14+ monocytes. (A) Latently infected CD34+ cells secrete CCL2/MCP-1 and CCL8/MCP-2 cytokines that recruit CD14+ monocytes and CD4+ Th1 cells to latently infected cells. However, the secretion of highly immunosuppressive cellular IL-10 and TGF-β inhibit proliferation and the antiviral functions of CD4+ Th1 cells. (B) Upon differentiation of CD14+ monocytes into mature macrophages or dendritic cells, reactivation of HCMV IE gene expression is promoted and the viral lytic gene program is initiated.

Similar articles

Cited by

References

    1. Ahlfors K., Ivarsson S. A., Harris S. (2001). Secondary maternal cytomegalovirus infection-A significant cause of congenital disease. Pediatrics 107 1227–1228. 10.1542/peds.107.5.1227 - DOI - PubMed
    1. Akter P., Cunningham C., McSharry B. P., Dolan A., Addison C., Dargan D. J., et al. (2003). Two novel spliced genes in human cytomegalovirus. J. Gen. Virol. 84 1117–1122. 10.1099/vir.0.18952-0 - DOI - PubMed
    1. Almeida G. D., Porada C. D., St Jeor S., Ascensao J. L. (1994). Human cytomegalovirus alters interleukin-6 production by endothelial cells. Blood 83 370–376. - PubMed
    1. Avdic S., Cao J. Z., Cheung A. K., Abendroth A., Slobedman B. (2011). Viral interleukin-10 expressed by human cytomegalovirus during the latent phase of infection modulates latently infected myeloid cell differentiation. J. Virol. 85 7465–7471. 10.1128/JVI.00088-11 - DOI - PMC - PubMed
    1. Bain M., Mendelson M., Sinclair J. (2003). Ets-2 Repressor Factor (ERF) mediates repression of the human cytomegalovirus major immediate-early promoter in undifferentiated non-permissive cells. J. Gen. Virol. 84 41–49. 10.1099/vir.0.18633-0 - DOI - PubMed