Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 May 26;14(1):39.
doi: 10.1186/s12951-016-0193-x.

Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy

Affiliations
Review

Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy

Ewelina Piktel et al. J Nanobiotechnology. .

Abstract

The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

Keywords: Cancer; Drug delivery; Nanotechnology.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Physicochemical features of different nanomaterials proposed as drug carriers in drug delivery systems and targeted therapy. The most important properties of nanomaterials determining their theranostic potential, employment in medical applications and effect on pharmacokinetic parameters in vivo conditions, including biodistribution, toxicity and internalization into target cells
Fig. 2
Fig. 2
Active drug delivery using targeted ligand/moieties and stimuli-responsive nanoformulations. Figure presents the model of diblock co-polymer nanoparticles with protective cover around the core and stimuli-response shell. Passively circulated nanoparticles accumulate in tumors via enhanced permeability and retention (EPR) effect and are released into extracellular environment of tumor. The attachment of homing ligands, targeted against specific moieties on the surface of cancer cells makes available for recognition of tumor cells from normal cells. Additionally, the specificity of nanoparticles-based therapeutics might be enhanced due to employment of nanosystems sensitive to triggering by external factors, such as temperature, light, and magnetic field, alternations in pH value or as effect of biological activity of enzymes, which allows for release of factors-activated payload drugs into cancer cells via receptor-mediated endocytosis, phagocytosis, pinocytosis or macropinocytosis
Fig. 3
Fig. 3
Magnetic nanoparticles (MNPs) functionalization by homing molecules (RGD-peptide) increases particles elimination and prevents non-specific accumulation in mice healthy organs. Pharmacokinetic of aminosilane coated magnetic nanoparticles (MNP@NH2) and their derivatives functionalized by RGD peptide (MNP@RGD) 8 h after intravenous injection (a). Structure of magnetic nanoparticles functionalized by RGD peptide and fluorescent probe DYE 800 CW (b). Biodistribution of MNP@NH2 and MNP@RGD 8 h after intravenous injection (c)

Similar articles

Cited by

References

    1. Sikora K. The impact of future technology on cancer care. Clin Med. 2002;2:560–568. doi: 10.7861/clinmedicine.2-6-560. - DOI - PMC - PubMed
    1. Chidambaram M, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci. 2011;14:67–77. - PubMed
    1. Sakamoto JH, van de Ven AL, Godin B, Blanco E, Serda RE, Grattoni A, Ziemys A, Bouamrani A, Hu T, Ranganathan SI, et al. Enabling individualized therapy through nanotechnology. Pharmacol Res. 2010;62:57–89. doi: 10.1016/j.phrs.2009.12.011. - DOI - PMC - PubMed
    1. Tang X, Liang Y, Feng X, Zhang R, Jin X, Sun L. Co-delivery of docetaxel and Poloxamer 235 by PLGA-TPGS nanoparticles for breast cancer treatment. Mater Sci Eng C Mater Biol Appl. 2015;49:348–355. doi: 10.1016/j.msec.2015.01.033. - DOI - PubMed
    1. Zhao X, Chen Q, Li Y, Tang H, Liu W, Yang X. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur J Pharm Biopharm. 2015;93:27–36. doi: 10.1016/j.ejpb.2015.03.003. - DOI - PubMed

MeSH terms

Substances