Cellular and circuit mechanisms underlying spinocerebellar ataxias
- PMID: 27198167
- PMCID: PMC4983629
- DOI: 10.1113/JP271897
Cellular and circuit mechanisms underlying spinocerebellar ataxias
Abstract
Degenerative ataxias are a common form of neurodegenerative disease that affect about 20 individuals per 100,000. The autosomal dominant spinocerebellar ataxias (SCAs) are caused by a variety of protein coding mutations (single nucleotide changes, deletions and expansions) in single genes. Affected genes encode plasma membrane and intracellular ion channels, membrane receptors, protein kinases, protein phosphatases and proteins of unknown function. Although SCA-linked genes are quite diverse they share two key features: first, they are highly, although not exclusively, expressed in cerebellar Purkinje neurons (PNs), and second, when mutated they lead ultimately to the degeneration of PNs. In this review we summarize ataxia-related changes in PN neurophysiology that have been observed in various mouse knockout lines and in transgenic models of human SCA. We also highlight emerging evidence that altered metabotropic glutamate receptor signalling and disrupted calcium homeostasis in PNs form a common, early pathophysiological mechanism in SCAs. Together these findings indicate that aberrant calcium signalling and profound changes in PN neurophysiology precede PN cell loss and are likely to lead to cerebellar circuit dysfunction that explains behavioural signs of ataxia characteristic of the disease.
© 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Figures


Similar articles
-
Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias.Cerebellum. 2012 Sep;11(3):630-9. doi: 10.1007/s12311-010-0182-9. Cerebellum. 2012. PMID: 20480274 Free PMC article. Review.
-
Disrupted Calcium Signaling in Animal Models of Human Spinocerebellar Ataxia (SCA).Int J Mol Sci. 2019 Dec 27;21(1):216. doi: 10.3390/ijms21010216. Int J Mol Sci. 2019. PMID: 31892274 Free PMC article. Review.
-
A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2.Elife. 2017 May 18;6:e26377. doi: 10.7554/eLife.26377. Elife. 2017. PMID: 28518055 Free PMC article.
-
Calcium Signaling, PKC Gamma, IP3R1 and CAR8 Link Spinocerebellar Ataxias and Purkinje Cell Dendritic Development.Curr Neuropharmacol. 2018 Jan 30;16(2):151-159. doi: 10.2174/1570159X15666170529104000. Curr Neuropharmacol. 2018. PMID: 28554312 Free PMC article. Review.
-
Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice.J Physiol. 2017 Jan 1;595(1):141-164. doi: 10.1113/JP272950. Epub 2016 Sep 15. J Physiol. 2017. PMID: 27440721 Free PMC article.
Cited by
-
Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion.Front Neurosci. 2020 Jun 9;14:571. doi: 10.3389/fnins.2020.00571. eCollection 2020. Front Neurosci. 2020. PMID: 32581696 Free PMC article. Review.
-
BOD1 regulates the cerebellar IV/V lobe-fastigial nucleus circuit associated with motor coordination.Signal Transduct Target Ther. 2022 Jun 1;7(1):170. doi: 10.1038/s41392-022-00989-x. Signal Transduct Target Ther. 2022. PMID: 35641478 Free PMC article.
-
Dominant Mutations in GRM1 Cause Spinocerebellar Ataxia Type 44.Am J Hum Genet. 2017 Sep 7;101(3):451-458. doi: 10.1016/j.ajhg.2017.08.005. Am J Hum Genet. 2017. PMID: 28886343 Free PMC article.
-
Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias.Front Neurosci. 2020 Jul 16;14:707. doi: 10.3389/fnins.2020.00707. eCollection 2020. Front Neurosci. 2020. PMID: 32765211 Free PMC article. Review.
-
Disruption of endoplasmic reticulum-mitochondria tethering proteins in post-mortem Alzheimer's disease brain.Neurobiol Dis. 2020 Sep;143:105020. doi: 10.1016/j.nbd.2020.105020. Epub 2020 Jul 17. Neurobiol Dis. 2020. PMID: 32682953 Free PMC article.
References
-
- Aiba A, Kano M, Chen C, Stanton ME, Fox GD, Herrup K, Zwingman TA & Tonegawa S (1994). Deficient cerebellar long‐term depression and impaired motor learning in mGluR1 mutant mice. Cell 79, 377–388. - PubMed
-
- Batchelor AM & Garthwaite J (1997). Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway. Nature 385, 74–77. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources