Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr 9;387(10027):1531-1539.
doi: 10.1016/S0140-6736(16)00562-6. Epub 2016 Mar 2.

Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study

Affiliations

Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study

Van-Mai Cao-Lormeau et al. Lancet. .

Abstract

Background: Between October, 2013, and April, 2014, French Polynesia experienced the largest Zika virus outbreak ever described at that time. During the same period, an increase in Guillain-Barré syndrome was reported, suggesting a possible association between Zika virus and Guillain-Barré syndrome. We aimed to assess the role of Zika virus and dengue virus infection in developing Guillain-Barré syndrome.

Methods: In this case-control study, cases were patients with Guillain-Barré syndrome diagnosed at the Centre Hospitalier de Polynésie Française (Papeete, Tahiti, French Polynesia) during the outbreak period. Controls were age-matched, sex-matched, and residence-matched patients who presented at the hospital with a non-febrile illness (control group 1; n=98) and age-matched patients with acute Zika virus disease and no neurological symptoms (control group 2; n=70). Virological investigations included RT-PCR for Zika virus, and both microsphere immunofluorescent and seroneutralisation assays for Zika virus and dengue virus. Anti-glycolipid reactivity was studied in patients with Guillain-Barré syndrome using both ELISA and combinatorial microarrays.

Findings: 42 patients were diagnosed with Guillain-Barré syndrome during the study period. 41 (98%) patients with Guillain-Barré syndrome had anti-Zika virus IgM or IgG, and all (100%) had neutralising antibodies against Zika virus compared with 54 (56%) of 98 in control group 1 (p<0.0001). 39 (93%) patients with Guillain-Barré syndrome had Zika virus IgM and 37 (88%) had experienced a transient illness in a median of 6 days (IQR 4-10) before the onset of neurological symptoms, suggesting recent Zika virus infection. Patients with Guillain-Barré syndrome had electrophysiological findings compatible with acute motor axonal neuropathy (AMAN) type, and had rapid evolution of disease (median duration of the installation and plateau phases was 6 [IQR 4-9] and 4 days [3-10], respectively). 12 (29%) patients required respiratory assistance. No patients died. Anti-glycolipid antibody activity was found in 13 (31%) patients, and notably against GA1 in eight (19%) patients, by ELISA and 19 (46%) of 41 by glycoarray at admission. The typical AMAN-associated anti-ganglioside antibodies were rarely present. Past dengue virus history did not differ significantly between patients with Guillain-Barré syndrome and those in the two control groups (95%, 89%, and 83%, respectively).

Interpretation: This is the first study providing evidence for Zika virus infection causing Guillain-Barré syndrome. Because Zika virus is spreading rapidly across the Americas, at risk countries need to prepare for adequate intensive care beds capacity to manage patients with Guillain-Barré syndrome.

Funding: Labex Integrative Biology of Emerging Infectious Diseases, EU 7th framework program PREDEMICS. and Wellcome Trust.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Epidemic curve of ZIKV virus suspected cases and Guillain-Barré syndromes in French Polynesia 2013-2014. ZIKV cases are shown in orange and GBS cases in black

Comment in

Similar articles

Cited by

References

    1. Gubler DJ, Kuno G, Markoff L. Flaviviruses. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, et al., editors. Fields virology. 5th ed. Vol. 34. Philadelphia, PA: Lippincott Williams & Wilkins Publishers; 2007. pp. 1155–1227.
    1. Dick GWA, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg. 1952;46:509–20. - PubMed
    1. Macnamara FN. Zika virus: a report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans R Soc Trop Med Hyg. 1954;48:139–45. - PubMed
    1. Musso D, Cao-Lormeau VM, Gubler DJ. Zika virus: following the path of dengue and chikungunya? Lancet. 2015;386:243–4. - PubMed
    1. Faye O, Freire CCM, Iamarino A, et al. Molecular Evolution of Zika Virus during Its Emergence in the 20th Century. PLoS Negl Trop Dis. 2014;8 doi: 10.1371/journal.pntd.0002636. published online Jan 9. - DOI - PMC - PubMed

Publication types