Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jun;243(6):1339-50.
doi: 10.1007/s00425-016-2478-6. Epub 2016 Feb 22.

Strigolactone versus gibberellin signaling: reemerging concepts?

Affiliations
Review

Strigolactone versus gibberellin signaling: reemerging concepts?

Eva-Sophie Wallner et al. Planta. 2016 Jun.

Abstract

In this review, we compare knowledge about the recently discovered strigolactone signaling pathway and the well established gibberellin signaling pathway to identify gaps of knowledge and putative research directions in strigolactone biology. Communication between and inside cells is integral for the vitality of living organisms. Hormonal signaling cascades form a large part of this communication and an understanding of both their complexity and interactive nature is only beginning to emerge. In plants, the strigolactone (SL) signaling pathway is the most recent addition to the classically acting group of hormones and, although fundamental insights have been made, knowledge about the nature and impact of SL signaling is still cursory. This narrow understanding is in spite of the fact that SLs influence a specific spectrum of processes, which includes shoot branching and root system architecture in response, partly, to environmental stimuli. This makes these hormones ideal tools for understanding the coordination of plant growth processes, mechanisms of long-distance communication and developmental plasticity. Here, we summarize current knowledge about SL signaling and employ the well-characterized gibberellin (GA) signaling pathway as a scaffold to highlight emerging features as well as gaps in our knowledge in this context. GA signaling is particularly suitable for this comparison because both signaling cascades share key features of hormone perception and of immediate downstream events. Therefore, our comparative view demonstrates the possible level of complexity and regulatory interfaces of SL signaling.

Keywords: D53/SMXL; Hormonal signaling; Long-distance communication; SCF complex.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Similarities between SL and GA perception. a Molecular structures of SL and GA are exemplified by (+)-5-Deoxystrigol and GA3, respectively. The ABC scaffold of SL is connected to ring D by an enol ether bridge (indicated in orange). b A schematic comparison between SL- and GA-signaling is shown. Unlike GID1, the α/β-hydrolase D14 preserved its catalytic activity. Bound SL is hydrolyzed through a nucleophilic attack by Ser147 (visualized in orange) at the enol ether bridge. Marvin was used for drawing, displaying and characterizing chemical structures, substructures and reactions, Marvin Beans (15.9.28.0), 2015, ChemAxon (http://www.chemaxon.com). Abbreviations, see main text
Fig. 2
Fig. 2
Comparison of D53/SMXL family members. a A maximum likelihood phylogenic tree based on an amino acid sequence alignment of the Arabidopsis SMXL proteins. The scale bar indicates a branch length with 0.5 amino acid substitutions per site. The three putative sub-clades are emphasized by blue brackets. CLC Main Workbench 7.6.1 (CLC Bio Qiagen, Denmark). b Shown is the motif important for D3-dependent ubiquitination of D53 from rice identified previously (Jiang et al. ; Zhou et al. 2013). Aligned are the eight SMXL family members from Arabidopsis, the SMXL rice homolog D53 (OsD53) and the mutated d53 protein in which this motif is lost (indicated by a red bracket). Note that the RGKTGI motif is not present in members of sub-clade 2. CLC Main Workbench 7.6.1 (CLC Bio Qiagen, Denmark)

Similar articles

Cited by

References

    1. Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T. Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Natl Acad Sci USA. 2014;111(50):18084–18089. doi: 10.1073/pnas.1410801111. - DOI - PMC - PubMed
    1. Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell. 2015;27(1):20–32. doi: 10.1105/tpc.114.134874. - DOI - PMC - PubMed
    1. Agustí J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM, Greb T. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA. 2011;108(50):20242–20247. doi: 10.1073/pnas.1111902108. - DOI - PMC - PubMed
    1. Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 2005;435(7043):824–827. doi: 10.1038/nature03608. - DOI - PubMed
    1. Akiyama K, Ogasawara S, Ito S, Hayashi H. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 2010;51(7):1104–1117. doi: 10.1093/pcp/pcq058. - DOI - PMC - PubMed

LinkOut - more resources