Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Apr 5;7(14):17631-40.
doi: 10.18632/oncotarget.7268.

DARPP-32: from neurotransmission to cancer

Affiliations
Review

DARPP-32: from neurotransmission to cancer

Abbes Belkhiri et al. Oncotarget. .

Abstract

Dopamine and cAMP-regulated phosphoprotein Mr 32,000 (DARPP-32), also known as phosphoprotein phosphatase-1 regulatory subunit 1B (PPP1R1B), was initially discovered as a substrate of dopamine-activated protein kinase A (PKA) in the neostriatum in the brain. While phosphorylation at Thr-34 by PKA converts DARPP-32 into a potent inhibitor of protein phosphatase 1 (PP1), phosphorylation at Thr-75 transforms DARPP-32 into an inhibitor of PKA. Through regulation of DARPP-32 phosphorylation and modulation of protein phosphatase and kinase activities, DARPP-32 plays a critical role in mediating the biochemical, electrophysiological, and behavioral effects controlled by dopamine and other neurotransmitters in response to drugs of abuse and psychostimulants. Altered expression of DARPP-32 and its truncated isoform (t-DARPP), specifically in the prefrontal cortex, has been associated with schizophrenia and bipolar disorder. Moreover, cleavage of DARPP-32 by calpain has been implicated in Alzheimer's disease. Amplification of the genomic locus of DARPP-32 at 17q12 has been described in several cancers. DARPP-32 and t-DARPP are frequently overexpressed at the mRNA and protein levels in adenocarcinomas of the breast, prostate, colon, and stomach. Several studies demonstrated the pro-survival, pro-invasion, and pro-angiogenic functions of DARPP-32 in cancer. Overexpression of DARPP-32 and t-DARPP also promotes chemotherapeutic drug resistance and cell proliferation in gastric and breast cancers through regulation of pro-oncogenic signal transduction pathways. The expansion of DARPP-32 research from neurotransmission to cancer underscores the broad scope and implication of this protein in disparate human diseases.

Keywords: DARPP-32; PPP1R1B; cancer; neurotransmission; t-DARPP.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

There is no conflict of interest.

Figures

Figure 1
Figure 1. Regulation of PP1 and PKA by multisite phosphorylation of DARPP-32
Phosphorylation of DARPP-32 by protein kinases is indicated by green arrows, whereas dephosphorylation of DARPP-32 by protein phosphatases is depicted by red arrows. Phosphorylation of DARPP-32 at Thr-34 by PKA converts it into a potent inhibitor of PP1. However, phosphorylation of DARPP-32 at Thr-75 by CDK5 transforms it into an inhibitor of PKA. Dephosphorylation of Ser-137 by PP2C facilitates dephosphorylation of Thr-34 by PP2B, thereby removing the PKA-induced inhibition of PP1. Phosphorylation of Ser-45 and Ser-102 has no effect on the potency of DARPP-32 as an inhibitor of PP1. The scheme is based on [29].
Figure 2
Figure 2. Genomic structure of DARPP-32 and its truncated isoform, t-DARPP
DARPP-32 and t-DARPP share identical sequence from exon 2 to the 3′ end. Of note, exon 1 of t-DARPP is spliced from the intron 1 of DARPP-32. DARPP-32 (1,983 bp) encodes 204 amino acids, whereas t-DARPP (1,502 bp) encodes 168-amino-acids protein. The major phosphorylation sites on the proteins are indicated by T, threonine, and S, serine. DARPP-32 contains five phosphorylation sites at T34, S45, T75, S102, and S137, whereas t-DARPP lacks the T34 phosphorylation site of DARPP-32. The scheme is based on [39].
Figure 3
Figure 3. DARPP-32-regulated cancer signaling pathways
Based on the published data, DARPP-32 constitutes a signaling hub that regulates multiple pathways important for carcinogenesis and tumor progression. Activation is depicted by green arrows and negative regulation is indicated by red T-lines.
Figure 4
Figure 4. DARPP-32 regulates major hallmarks of tumorigenesis
Accumulating published reports strongly suggest that DARPP-32 promotes cancer cell proliferation, survival, invasion and metastasis, and angiogenesis. Each DARPP-32-mediated function involves regulation of corresponding signaling pathways depicted in the schematic diagram.

Similar articles

Cited by

References

    1. Walaas SI, Nairn AC, Greengard P. Regional distribution of calcium- and cyclic adenosine 3′:5′-monophosphate-regulated protein phosphorylation systems in mammalian brain. I. Particulate systems. J Neurosci. 1983a;3:291–301. - PMC - PubMed
    1. Walaas SI, Aswad DW, Greengard P. A dopamine- and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions. Nature. 1983b;301:69–71. - PubMed
    1. Ouimet CC, Miller PE, Hemmings HC, Jr., Walaas SI, Greengard P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III. Immunocytochemical localization. J Neurosci. 1984;4:111–124. - PMC - PubMed
    1. Hemmings HC, Jr, Greengard P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein: regional, tissue, and phylogenetic distribution. J Neurosci. 1986;6:1469–1481. - PMC - PubMed
    1. Meister B, Fryckstedt J, Schalling M, Cortes R, Hokfelt T, Aperia A, Hemmings HC, Jr, Nairn AC, Ehrlich M, Greengard P. Dopamine- and cAMP-regulated phosphoprotein (DARPP-32) and dopamine DA1 agonist-sensitive Na+,K+-ATPase in renal tubule cells. Proc Natl Acad Sci U S A. 1989;86:8068–8072. - PMC - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources