Skip to main page content
U.S. flag

An official website of the United States government

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2016 Mar 7;52(19):3789-92.
doi: 10.1039/c6cc00273k.

Comparison of design strategies for α-helix backbone modification in a protein tertiary fold

Affiliations
Comparative Study

Comparison of design strategies for α-helix backbone modification in a protein tertiary fold

Nathan A Tavenor et al. Chem Commun (Camb). .

Abstract

We report here the comparison of five classes of unnatural amino acid building blocks for their ability to be accommodated into an α-helix in a protein tertiary fold context. High-resolution structural characterization and analysis of folding thermodynamics yield new insights into the relationship between backbone composition and folding energetics in α-helix mimetics and suggest refined design rules for engineering the backbones of natural sequences.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
(A) Structures of a natural α-residue and five classes of unnatural replacements compared herein. (B, C) Sequence and crystal structure (PDB 2QMT) of Streptococcal protein GB1 (1), the host sequence for helix modification; the crystal structure differs from the wild-type sequence at the N-terminus (MQ in crystal structure vs. DT in 1). (D) Sequences for variants of protein 1 bearing heterogeneous-backbone helices; note, 1–9 are all 56-residue oligomers, but only the helical segment (gray shading in A) is shown. For β3, β2, and chiral Cα-Me-α-residues, the R group in the building block is that of the corresponding natural α-amino acid denoted by the single letter code in the sequence.
Fig. 2
Fig. 2
Comparison of the corresponding α-, β3-, and β2-residues at two sites in the crystal structures of 1–4 (PDB 2QMT, 4KGR, 5HFY, and 5HG2). For position Asn35, chemical structures and distances for putative side-chain to backbone n→π* interactions are shown. In the structure for 1, the side chain carboxamide of Asn35 is flipped relative to the reported structure (PDB 2QMT).
Fig. 3
Fig. 3
Folding free energy at 298 K for proteins 1–8. Error bars show parameter uncertainty from the fits (Fig S4, Table S3).
Fig. 4
Fig. 4
Comparison of the corresponding α-, βcyc-, and Cα-Me-α-residues at position 24 in the crystal structures of 1, 6, and 7 (PDB 2QMT, 4OZB, and 5HI1).

Similar articles

Cited by

References

    1. Gellman SH. Acc. Chem. Res. 1998;31:173–180.
    1. Bautista AD, Craig CJ, Harker EA, Schepartz A. Curr. Opin. Chem. Biol. 2007;11:685–692. - PMC - PubMed
    2. Goodman CM, Choi S, Shandler S, DeGrado WF. Nat. Chem. Biol. 2007;3:252–262. - PMC - PubMed
    3. Guichard G, Huc I. Chem. Commun. 2011;47:5933–5941. - PubMed
    4. Horne WS. Expert Opin. Drug Discov. 2011;6:1247–1262. - PubMed
    5. Martinek TA, Fulop F. Chem. Soc. Rev. 2012;41:687–702. - PubMed
    6. Sun J, Zuckermann RN. ACS Nano. 2013;7:4715–4732. - PubMed
    1. Hegedüs Z, Wéber E, Kriston-Pál É, Makra I, Czibula Á, Monostori É, Martinek TA. J. Am. Chem. Soc. 2013;135:16578–16584. - PubMed
    2. Wang PSP, Nguyen JB, Schepartz A. J. Am. Chem. Soc. 2014;136:6810–6813. - PubMed
    3. Checco JW, Kreitler DF, Thomas NC, Belair DG, Rettko NJ, Murphy WL, Forest KT, Gellman SH. Proc. Natl. Acad. Sci. USA. 2015;112:4552–4557. - PMC - PubMed
    1. Mannige RV, Haxton TK, Proulx C, Robertson EJ, Battigelli A, Butterfoss GL, Zuckermann RN, Whitelam S. Nature. 2015;526:415–420. - PubMed
    2. Chandramouli N, Ferrand Y, Lautrette G, Kauffmann B, Mackereth CD, Laguerre M, Dubreuil D, Huc I. Nature Chem. 2015;7:334–341. - PubMed
    3. Collie GW, Pulka-Ziach K, Lombardo CM, Fremaux J, Rosu F, Decossas M, Mauran L, Lambert O, Gabelica V, Mackereth CD, Guichard G. Nature Chem. 2015;7:871–878. - PubMed
    1. Reinert ZE, Horne WS. Org. Biomol. Chem. 2014;12:8796–8802. - PMC - PubMed

Publication types

LinkOut - more resources