Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 22;11(1):e0146821.
doi: 10.1371/journal.pone.0146821. eCollection 2016.

Progressive Induction of Type 2 Diabetes: Effects of a Reality-Like Fructose Enriched Diet in Young Wistar Rats

Affiliations

Progressive Induction of Type 2 Diabetes: Effects of a Reality-Like Fructose Enriched Diet in Young Wistar Rats

Julie Dupas et al. PLoS One. .

Abstract

Purpose: The aim of this study was to characterize short and medium-lasting effects of fructose supplementation on young Wistar rats. The diet was similar to actual human consumption.

Methods: Three week old male rats were randomly divided into 2 groups: control (C; n = 16), fructose fed (FF; n = 16) with a fructose enriched drink for 6 or 12 weeks. Bodyweight, fasting glycemia and systolic blood pressure were monitored. Glucose tolerance was evaluated using an oral glucose tolerance test. Insulinemia was measured concomitantly and enable us to calculate insulin resistance markers (HOMA-IR, Insulin Sensitivity Index for glycemia: ISI-gly). Blood chemistry analyses were performed.

Results: After six weeks of fructose supplementation, rats were not overweight but presented increased fasting glycemia, reduced glucose tolerance, and lower insulin sensitivity compared to control group. Systolic blood pressure and heart weight were also increased without any change in renal function (theoretical creatinine clearance). After twelve weeks of fructose supplementation, FF rats had increased bodyweight and presented insulin resistance (higher HOMA-IR, lower ISI-gly). Rats also presented higher heart volume and lower ASAT/ALAT ratio (presumed liver lesion). Surprisingly, the Total Cholesterol/Triglycerides ratio was increased only after six weeks of fructose supplementation, predicting a higher LDL presence and thus a higher risk of developing cardiovascular disease. This risk was no longer present after twelve weeks of a fructose enriched diet.

Conclusion: On young Wistar rats, six weeks of fructose supplementation is sufficient to induce signs of metabolic syndrome. After twelve weeks of fructose enriched diet, rats are insulin resistant. This model enabled us to study longitudinally the early development of type 2 diabetes.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Effects of fructose supplementation on oral glucose tolerance test and its corresponding insulin level at age 9 and 13 weeks.
(1 A and B) Glycemia (mg/dL) is represented as a function of the time (min); at age 9 weeks, n = 8 for both C and FF, at age 13 weeks n = 7 for C rats and n = 8 for FF rats. (1 C and D) Insulin levels (ng/mL) are represented as a function of the time (min); at age 9 weeks, n = 6 for both C and FF, at age 13 weeks n = 7 for C rats and n = 7 for FF rats. FF: fructose supplemented; C: control. Statistical values: *<0.05, **<0.01, ***<0.001.
Fig 2
Fig 2. Effects of fructose supplementation on Insulin Sensitivity Indices for glycemia (ISI-gly) and Homeostasis Model Assessment for Insulin Resistance (HOMA-IR).
(2A) ISI-gly was calculated at both 9 and 13 weeks. (2B) HOMA-IR was calculated at both 9 and 13 weeks. FF: fructose supplemented; C: control. For both indicator: at age 9 weeks n = 6 for both C and FF, at age 13 weeks n = 7 for C rats and n = 7 for FF rats. Statistical values: *<0.05, **<0.01, ***<0.001.
Fig 3
Fig 3. Effects of fructose supplementation on systolic blood pressure and heart volume.
(3A) Systolic blood pressure was measure at age 8 weeks (n = 8 for both FF and C). (3B) Heart volume was measured at age 9 and 15 weeks; at age 9 weeks n = 8 for both C and FF rats, at age 15 weeks n = 7 for both groups. FF: fructose supplemented; C: control. Statistical values: *<0.05, **<0.01, ***<0.001.

Similar articles

Cited by

References

    1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94: 311–321. 10.1016/j.diabres.2011.10.029 - DOI - PubMed
    1. Wild S, Roglic G, Green A, Sicree R, King H. Global Prevalence of Diabetes Estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27: 1047–1053. 10.2337/diacare.27.5.1047 - DOI - PubMed
    1. Malik VS, Popkin BM, Bray GA, Després J-P, Willett WC, Hu FB. Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes A meta-analysis. Diabetes Care. 2010;33: 2477–2483. 10.2337/dc10-1079 - DOI - PMC - PubMed
    1. Tappy L, Lê K-A. Metabolic Effects of Fructose and the Worldwide Increase in Obesity. Physiol Rev. 2010;90: 23–46. 10.1152/physrev.00019.2009 - DOI - PubMed
    1. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr. 2002;76: 911–922. - PubMed

MeSH terms

Grants and funding

The authors have no support or funding to report.