Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jan 5:14:1.
doi: 10.1186/s12964-015-0125-7.

Phase separation in biology; functional organization of a higher order

Affiliations
Review

Phase separation in biology; functional organization of a higher order

Diana M Mitrea et al. Cell Commun Signal. .

Abstract

Inside eukaryotic cells, macromolecules are partitioned into membrane-bounded compartments and, within these, some are further organized into non-membrane-bounded structures termed membrane-less organelles. The latter structures are comprised of heterogeneous mixtures of proteins and nucleic acids and assemble through a phase separation phenomenon similar to polymer condensation. Membrane-less organelles are dynamic structures maintained through multivalent interactions that mediate diverse biological processes, many involved in RNA metabolism. They rapidly exchange components with the cellular milieu and their properties are readily altered in response to environmental cues, often implicating membrane-less organelles in responses to stress signaling. In this review, we discuss: (1) the functional roles of membrane-less organelles, (2) unifying structural and mechanistic principles that underlie their assembly and disassembly, and (3) established and emerging methods used in structural investigations of membrane-less organelles.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Macromolecular condensation mediates the formation of membrane-less organelles. Membrane-less organelles are dynamic structures formed via a polymer-condensation-like, concentration-dependent phase separation mechanism. The critical concentration threshold (grey line) for phase separation can be tuned within a range of concentrations (shaded green box) through physico-chemical alterations to the system (i.e., posttranslational modifications to domains and/or motifs that alter the affinity of their interactions, changes in temperature, altered ionic strength, etc.). These changes can drive phase separation and assembly of membrane-less organelles, or their disassembly
Fig. 2
Fig. 2
Molecular basis for membrane-less organelles assembly. The proteins enriched within the matrices of membrane-less organelles commonly exhibit multiple modules that create multivalency, including folded binding domains (red) and low complexity regions (purple). Valency is often amplified by domains that enable homo-, or hetero-oligomerization (orange). Interactions between proteins containing different combinations of these interaction modules provide a framework for building a heterogeneous, infinitely expandable network within membrane-less organelles. Formation of this type of network drives phase separation when the critical concentration threshold is reached. For many of the examples discussed herein, active RNA transcription is needed for membrane-less organelle assembly. We hypothesize that expression of RNA in excess of a critical concentration threshold is needed to nucleate interactions with specific, multi-modular proteins, and for nucleating formation of membrane-less organelles. Stress signals can alter the multivalent interactions that drive phase separation and lead to partial or complete disassembly of the organelle

Similar articles

Cited by

References

    1. Handwerger KE, Cordero JA, Gall JG. Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Molecular Biology of the Cell. 2005;16:202–11. doi: 10.1091/mbc.E04-08-0742. - DOI - PMC - PubMed
    1. Fox AH, Lamond AI. Paraspeckles. Cold Spring Harbor Perspectives in Biology. 2010;2:a000687. - PMC - PubMed
    1. Lamond AI, Spector DL. Nuclear speckles: a model for nuclear organelles. Nature Reviews Molecular Cell Biology. 2003;4:605–12. doi: 10.1038/nrm1172. - DOI - PubMed
    1. Cioce M, Lamond AI. Cajal bodies: a long history of discovery. Annual Review of Cell and Developmental Biology. 2005;21:105–31. doi: 10.1146/annurev.cellbio.20.010403.103738. - DOI - PubMed
    1. Brangwynne CP, Mitchison TJ, Hyman AA. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:4334–9. doi: 10.1073/pnas.1017150108. - DOI - PMC - PubMed

Publication types