Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Oct 14;35(41):13860-7.
doi: 10.1523/JNEUROSCI.2599-15.2015.

Transcriptomic Approaches to Neural Repair

Affiliations
Review

Transcriptomic Approaches to Neural Repair

Jennifer N Dulin et al. J Neurosci. .

Abstract

Understanding why adult CNS neurons fail to regenerate their axons following injury remains a central challenge of neuroscience research. A more complete appreciation of the biological mechanisms shaping the injured nervous system is a crucial prerequisite for the development of robust therapies to promote neural repair. Historically, the identification of regeneration associated signaling pathways has been impeded by the limitations of available genetic and molecular tools. As we progress into an era in which the high-throughput interrogation of gene expression is commonplace and our knowledge base of interactome data is rapidly expanding, we can now begin to assemble a more comprehensive view of the complex biology governing axon regeneration. Here, we highlight current and ongoing work featuring transcriptomic approaches toward the discovery of novel molecular mechanisms that can be manipulated to promote neural repair.

Significance statement: Transcriptional profiling is a powerful technique with broad applications in the field of neuroscience. Recent advances such as single-cell transcriptomics, CNS cell type-specific and developmental stage-specific expression libraries are rapidly enhancing the power of transcriptomics for neuroscience applications. However, extracting biologically meaningful information from large transcriptomic datasets remains a formidable challenge. This mini-symposium will highlight current work using transcriptomic approaches to identify regulatory networks in the injured nervous system. We will discuss analytical strategies for transcriptomics data, the significance of noncoding RNA networks, and the utility of multiomic data integration. Though the studies featured here specifically focus on neural repair, the approaches highlighted in this mini-symposium will be of broad interest and utility to neuroscientists working in diverse areas of the field.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Belgard TG, Geschwind DH. Transcriptomics. In: Coppola G, editor. The OMICs: applications in neuroscience. Oxford, UK: Oxford UP; 2014. pp. 63–72.
    1. Belgard TG, Marques AC, Oliver PL, Abaan HO, Sirey TM, Hoerder-Suabedissen A, García-Moreno F, Molnár Z, Margulies EH, Ponting CP. A transcriptomic atlas of mouse neocortical layers. Neuron. 2011;71:605–616. doi: 10.1016/j.neuron.2011.06.039. - DOI - PMC - PubMed
    1. Benowitz LI, Popovich PG. Inflammation and axon regeneration. Curr Opin Neurol. 2011;24:577–583. doi: 10.1097/WCO.0b013e32834c208d. - DOI - PubMed
    1. Blackmore MG. Molecular control of axon growth: insights from comparative gene profiling and high-throughput screening. Int Rev Neurobiol. 2012;105:39–70. doi: 10.1016/B978-0-12-398309-1.00004-4. - DOI - PubMed
    1. Blackmore MG, Moore DL, Smith RP, Goldberg JL, Bixby JL, Lemmon VP. High content screening of cortical neurons identifies novel regulators of axon growth. Mol Cell Neurosci. 2010;44:43–54. doi: 10.1016/j.mcn.2010.02.002. - DOI - PMC - PubMed

Publication types

MeSH terms