Comparative plasma proteomic studies of pulmonary TiO2 nanoparticle exposure in rats using liquid chromatography tandem mass spectrometry
- PMID: 26375203
- PMCID: PMC4640999
- DOI: 10.1016/j.jprot.2015.09.010
Comparative plasma proteomic studies of pulmonary TiO2 nanoparticle exposure in rats using liquid chromatography tandem mass spectrometry
Abstract
Mounting evidence suggests that pulmonary exposure to nanoparticles (NPs) has a toxic effect on biological systems. A number of studies have shown that exposure to NPs result in systemic inflammatory response, oxidative stress, and leukocyte adhesion. However, significant knowledge gaps exist for understanding the key molecular mechanisms responsible for altered microvasculature function. Utilizing comprehensive LC-MS/MS and comparative proteomic analysis strategies, important proteins related to TiO2 NP exposure in rat plasma have been identified. Molecular pathway analysis of these proteins revealed 13 canonical pathways as being significant (p ≤ 0.05), but none were found to be significantly up or down-regulated (z>|2|). This work lays the foundation for future research that will monitor relative changes in protein abundance in plasma and tissue as a function of post-exposure time and TiO2 NP dosage to further elucidate mechanisms of pathway activation as well as to decipher other affected pathways.
Keywords: Biopathway analysis; Proteomics; TiO(2) nanoparticles.
Copyright © 2015 Elsevier B.V. All rights reserved.
Figures
Similar articles
-
Transcriptional profiling identifies physicochemical properties of nanomaterials that are determinants of the in vivo pulmonary response.Environ Mol Mutagen. 2015 Mar;56(2):245-64. doi: 10.1002/em.21936. Epub 2014 Dec 11. Environ Mol Mutagen. 2015. PMID: 25504612
-
Changes in protein expression in rat bronchoalveolar lavage fluid after exposure to zinc oxide nanoparticles: an iTRAQ proteomic approach.Rapid Commun Mass Spectrom. 2014 Apr 30;28(8):974-80. doi: 10.1002/rcm.6866. Rapid Commun Mass Spectrom. 2014. PMID: 24623703
-
Proteomics reveals multiple effects of titanium dioxide and silver nanoparticles in the metabolism of turbot, Scophthalmus maximus.Chemosphere. 2022 Dec;308(Pt 1):136110. doi: 10.1016/j.chemosphere.2022.136110. Epub 2022 Aug 22. Chemosphere. 2022. PMID: 36007739
-
Molecular responses of alveolar epithelial A549 cells to chronic exposure to titanium dioxide nanoparticles: A proteomic view.J Proteomics. 2016 Feb 16;134:163-173. doi: 10.1016/j.jprot.2015.08.006. Epub 2015 Aug 11. J Proteomics. 2016. PMID: 26276045
-
[Titanium dioxide nanoparticles--biological effects].Med Pr. 2014;65(5):651-63. Med Pr. 2014. PMID: 25812394 Review. Polish.
Cited by
-
Cell-Molecular Interactions of Nano- and Microparticles in Dental Implantology.Int J Mol Sci. 2023 Jan 23;24(3):2267. doi: 10.3390/ijms24032267. Int J Mol Sci. 2023. PMID: 36768589 Free PMC article.
-
Evaluation of the cytotoxic and cellular proteome impacts of food-grade TiO2 (E171) using simulated gastrointestinal digestions and a tri-culture small intestinal epithelial model.NanoImpact. 2020 Jan;17:10.1016/j.impact.2019.100202. doi: 10.1016/j.impact.2019.100202. NanoImpact. 2020. PMID: 32133427 Free PMC article.
-
Fueling a Hot Debate on the Application of TiO2 Nanoparticles in Sunscreen.Materials (Basel). 2019 Jul 20;12(14):2317. doi: 10.3390/ma12142317. Materials (Basel). 2019. PMID: 31330764 Free PMC article. Review.
-
Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm titanium dioxide nanoparticle aerosols in healthy adult rats after a single two-hour inhalation exposure.Part Fibre Toxicol. 2019 Jul 9;16(1):29. doi: 10.1186/s12989-019-0303-7. Part Fibre Toxicol. 2019. PMID: 31288843 Free PMC article.
-
Biological monitoring of workers exposed to engineered nanomaterials.Toxicol Lett. 2018 Dec 1;298:112-124. doi: 10.1016/j.toxlet.2018.06.003. Epub 2018 Jun 18. Toxicol Lett. 2018. PMID: 29920308 Free PMC article. Review.
References
-
- Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environmental pollution. 2007;150:5–22. - PubMed
-
- Roco MC. Nanotechnology Research Directions for Societal Needs in 2020. Springer; 2011. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years; pp. 1–28.
-
- Mueller NC, Nowack B. Exposure modeling of engineered nanoparticles in the environment. Environmental science & technology. 2008;42:4447–53. - PubMed
-
- Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environmental Science & Technology. 2009;43:4227–33. - PubMed
-
- Dockery D, Pope C, Xu X, Spengler J, Ware J, Fay M. An association between air-pollution and mortality in 6 United-States cities. N Engl J Med. 1993;329(24):1753–1759. Find this article online. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous