Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Aug 6:13:183.
doi: 10.1186/s12916-015-0422-4.

Identifying children with excess malaria episodes after adjusting for variation in exposure: identification from a longitudinal study using statistical count models

Affiliations

Identifying children with excess malaria episodes after adjusting for variation in exposure: identification from a longitudinal study using statistical count models

Francis Maina Ndungu et al. BMC Med. .

Abstract

Background: The distribution of Plasmodium falciparum clinical malaria episodes is over-dispersed among children in endemic areas, with more children experiencing multiple clinical episodes than would be expected based on a Poisson distribution. There is consistent evidence for micro-epidemiological variation in exposure to P. falciparum. The aim of the current study was to identify children with excess malaria episodes after controlling for malaria exposure.

Methods: We selected the model that best fit the data out of the models examined and included the following covariates: age, a weighted local prevalence of infection as an index of exposure, and calendar time to predict episodes of malaria on active surveillance malaria data from 2,463 children of under 15 years of age followed for between 5 and 15 years each. Using parameters from the zero-inflated negative binomial model which best fitted our data, we ran 100 simulations of the model based on our population to determine the variation that might be seen due to chance.

Results: We identified 212 out of 2,463 children who had a number of clinical episodes above the 95(th) percentile of the simulations run from the model, hereafter referred to as "excess malaria (EM)". We then identified exposure-matched controls with "average numbers of malaria" episodes, and found that the EM group had higher parasite densities when asymptomatically infected or during clinical malaria, and were less likely to be of haemoglobin AS genotype.

Conclusions: Of the models tested, the negative zero-inflated negative binomial distribution with exposure, calendar year, and age acting as independent predictors, fitted the distribution of clinical malaria the best. Despite accounting for these factors, a group of children suffer excess malaria episodes beyond those predicted by the model. An epidemiological framework for identifying these children will allow us to study factors that may explain excess malaria episodes.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Distribution of malaria episodes. Panel a shows the distribution of episodes by age-blocks. Children are stratified by the amount of exposure to parasites in their environment into three tertiles; green line, highest exposure index; blue line, medium exposure index; and red line, lowest exposure index. Panel b shows an overlay of the expected Poisson over the observed distribution of numbers of clinical malaria episodes. Panel c is the distribution of excess malaria (observed minus expected) determined after 100 simulations of the zero-inflated binomial distribution of the numbers of clinical episodes
Fig. 2
Fig. 2
Fractional polynomial plots showing relationships between age, exposure index, and calendar year with numbers of clinical malaria. a Age (in years) was broken down into several blocks. b Exposure index, an estimate for the local prevalence of malaria for individual children. c Calendar years during which the respective clinical data were collected
Fig. 3
Fig. 3
Differences in the levels of parasitaemia and axillary body temperature between excess malaria (EM) and age-matched average malaria (AM) controls. EM children were matched to AM children by EI, where both groups of children have been under active weekly surveillance for at least 5 years. Panels a and b compare the levels of parasitaemia and temperature during clinical malaria. Panel c compares the levels of asymptomatic parasitaemia during cross-section surveys done before malaria transmission. Panel d shows the prevalence of positive blood smears per individual children over several cross-sectional surveys
Fig. 4
Fig. 4
Geographical distribution of excess malaria (red dots) and average malaria (dark green dots) children in one of the study locations, Junju (2005–2013). The gradation from light green to dark green correlated with low to high exposure to malaria in the homesteads. The black dots mark the location of study homesteads

Similar articles

Cited by

References

    1. Noor AM, Kinyoki DK, Mundia CW, Kabaria CW, Mutua JW, Alegana VA, et al. The changing risk of Plasmodium falciparum malaria infection in Africa: 2000–10: a spatial and temporal analysis of transmission intensity. Lancet. 2014;383:1739–1747. doi: 10.1016/S0140-6736(13)62566-0. - DOI - PMC - PubMed
    1. Marsh K, Kinyanjui S. Immune effector mechanisms in malaria. Parasite Immunol. 2006;28:51–60. doi: 10.1111/j.1365-3024.2006.00808.x. - DOI - PubMed
    1. Mwangi TW, Fegan G, Williams TN, Kinyanjui SM, Snow RW, Marsh K. Evidence for over-dispersion in the distribution of clinical malaria episodes in children. PLoS One. 2008;3:e2196. doi: 10.1371/journal.pone.0002196. - DOI - PMC - PubMed
    1. Rono J, Farnert A, Murungi L, Ojal J, Kamuyu G, Guleid F, et al. Multiple clinical episodes of Plasmodium falciparum malaria in a low transmission intensity setting: exposure versus immunity. BMC Med. 2015;13:114. doi: 10.1186/s12916-015-0354-z. - DOI - PMC - PubMed
    1. Trape JF, Pison G, Spiegel A, Enel C, Rogier C. Combating malaria in Africa. Trends Parasitol. 2002;18:224–230. doi: 10.1016/S1471-4922(02)02249-3. - DOI - PubMed

Publication types