Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Oct 25;571(2):178-87.
doi: 10.1016/j.gene.2015.06.047. Epub 2015 Jun 24.

Genome-wide identification of turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing

Affiliations

Genome-wide identification of turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing

Zhen Wang et al. Gene. .

Abstract

Turnip mosaic virus (TuMV) is the most prevalent viral pathogen infecting most cruciferous plants. MicroRNAs (miRNAs) are around 22 nucleotides long non-protein-coding RNAs that play key regulatory roles in plants. Recent research findings show that miRNAs are involved in plant-virus interaction. However we know little about plant defense and viral offense system networks throughout microRNA regulation pathway. In this study, two small RNA libraries were constructed based on non-heading Chinese cabbage (Brassica campestris ssp. chinensis L. Makino, NHCC) leaves infected by TuMV and healthy leaves, and sequenced using the Illumina-Solexa high-throughput sequencing technology. A total of 86 conserved miRNAs belonging to 25 known miRNA families and 45 novel ones were identified. Among them, twelve conserved and ten new miRNAs were validated by real-time fluorescence quantitative PCR (qPCR). Differential expression analysis showed that 42 miRNAs were down-regulated and 27 miRNAs were up-regulated in response to TuMV stress. A total of 271 target genes were predicted using a bioinformatics approach, these genes are mainly involved in growth and resistance to various stresses. We further selected 13 miRNAs and their corresponding target genes to explore their expression pattern under TuMV and/or cold (4°C) stresses, and the results indicated that some of the identified miRNAs could link TuMV response with cold response of NHCC. The characterization of these miRNAs could contribute to a better understanding of plant-virus interaction throughout microRNA regulation pathway. This can lead to finding new approach to defend virus infection using miRNA in Chinese cabbage.

Keywords: Cold; MiRNA; Non-heading Chinese cabbage; Turnip mosaic virus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources