Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul;53(5):3462-3476.
doi: 10.1007/s12035-015-9242-y. Epub 2015 Jun 20.

Hydrogen-Rich Saline Attenuated Subarachnoid Hemorrhage-Induced Early Brain Injury in Rats by Suppressing Inflammatory Response: Possible Involvement of NF-κB Pathway and NLRP3 Inflammasome

Affiliations

Hydrogen-Rich Saline Attenuated Subarachnoid Hemorrhage-Induced Early Brain Injury in Rats by Suppressing Inflammatory Response: Possible Involvement of NF-κB Pathway and NLRP3 Inflammasome

Anwen Shao et al. Mol Neurobiol. 2016 Jul.

Abstract

Early brain injury (EBI), highlighted with inflammation and apoptosis, occurring within 72 h after subarachnoid hemorrhage (SAH), is associated with the prognosis of SAH. Recent studies have revealed that hydrogen-rich saline (HS) exerted multiple neuroprotective properties in many neurological diseases including SAH, involved to anti-oxidative and anti-apoptotic effect. We have previously reported that HS could attenuate neuronal apoptosis as well as vasospasm. However, the underlying mechanism of HS on inflammation in SAH-induced EBI remains unclear. In this study, we explored the influence of HS on nuclear factor-κB (NF-κB) pathway and nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome at early stage after SAH, by injecting HS intraperitoneally to SAH rats. One hundred and twenty-nine SD rats were randomly divided into four groups: sham group, SAH group, SAH+vehicle group, and SAH+HS group. SAH model was conducted using endovascular perforation method; all rats were sacrificed at 24 h after SAH. Protein level of pIκBα, cytosolic and nuclear p65, NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, interleukin-1β (IL-1β), and cleaved caspase-3 were measured by western blot. mRNA level of IL-1β, interleukin-6 (IL-6), tumor necrosis factor-c (TNF-α) were evaluated by RT-PCR. Cellular injury and death was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Nissl staining, respectively. Our results showed that pIκBα, nuclear p65, NLRP3, ASC, caspase-1, IL-1β, cleaved caspase-3 proteins, as well as the mRNA of IL-1β, IL-6, and TNF-ɑ increased at 24 h after SAH, while cytosolic p65 decreased. TUNEL and Nissl staining presented severe cellular injury at 24 h post-SAH. However, after HS administration, the changes mentioned above were reversed. In conclusion, HS may inhibit inflammation in EBI and improve neurobehavioral outcome after SAH, partially via inactivation of NF-κB pathway and NLRP3 inflammasome. Graphical Abstract Schematic representation of the mechanism of HS-mediated anti-inflammatory effect in EBI after SAH. The NF-κB inflammatory pathway and NLRP3 inflammasome are involved in the anti-neuroinflammatory effect of HS post-SAH. SAH-induced oxidative stress enhances the activation of NF-κB, thus promoting the translocation of p65 subunit into nucleus and increasing the mRNA level of its downstream proinflammatory cytokines (IL-1β, IN-6, TNF-α) and NLRP3. Elevated expression of NLRP3 mRNA increases the assembly of NLRP3 inflammasome. In addition, oxidative stress after SAH stimulates the activation of NLRP3 inflammasome, therefore, promoting caspase-1 activation and the cleavage of pro-IL-1β into mature IL-1β. Finally, activation of NF-κB pathway and NLRP3 inflammasome contribute to the inflammation response and cellular injury in EBI after SAH. HS treatment reversed the detrimental effect mentioned above via inactivation of NF-κB pathway and NLRP3 inflammasome. NF-κB nuclear factor-κB, IκB inhibitor of NF-κB, IKK Iκ kinase, NLRP3 nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3, ASC apoptosis-associated speck-like protein containing a caspase recruitment domain.

Keywords: Early brain injury; Hydrogen; Inflammation; NLRP3 inflammasome; Nuclear factor κB; Subarachnoid hemorrhage.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ann Neurol. 2014 Feb;75(2):209-19 - PubMed
    1. Nature. 2011 Jan 13;469(7329):221-5 - PubMed
    1. Shock. 2015 May;43(5):504-11 - PubMed
    1. J Biol Chem. 1972 Nov 10;247(21):6960-2 - PubMed
    1. Eur J Pharmacol. 2014 Dec 15;745:59-68 - PubMed

Publication types

MeSH terms

LinkOut - more resources