Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2015 Mar 20;5(1):33-52.
eCollection 2015.

The COP9 signalosome and vascular function: intriguing possibilities?

Affiliations
Review

The COP9 signalosome and vascular function: intriguing possibilities?

Douglas S Martin et al. Am J Cardiovasc Dis. .

Abstract

Disorders of vascular function contribute importantly to cardiovascular disease which represents a substantial cause of morbidity and mortality worldwide. An emerging paradigm in the study of cardiovascular diseases is that protein ubiquitination and turnover represent key pathological mechanisms. Our understanding of these processes in the vasculature is growing but remains incomplete. Since protein ubiquitination and turnover can represent a terminal event in the life of a given protein, entry into these pathways must be highly regulated. However, at present understanding of these regulatory mechanisms, particularly in the vasculature, is fragmentary. The COP9 (constitutive photomorphogenic mutant 9) signalosome (CSN) is a heteromeric protein complex implicated in the control of protein degradation. The CSN participates critically in the control of Cullin Ring Ligases (CRLs), at least in part via the detachment of a small protein, Nedd8 (deneddylation). CRLs are one of the largest groups of ubiquitin ligases, which represent the most selective control point for protein ubiquitination. Thus, the CSN by virtue of its ability to control the CRLs ubiquitin ligase activity is ideally positioned to effect selective modulation of protein turnover. This review surveys currently available data regarding the potential role of the CSN in control of vascular function. Data potentially linking the CSN to control of regulatory proteins involved in vascular smooth muscle proliferation and to vascular smooth muscle contraction are presented with the intent of providing potentially intriguing possibilities for future investigation.

Keywords: The COP9 signalosome; cullin-RING ligases; ubiquitination; vascular smooth muscle contraction; vascular smooth muscle proliferation.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A summary of potential CSN targets in vasculature. The CSN is a heteromeric complex consisting of 8 subunits, CSN1~CSN8. The CSN is responsible for cullin deneddylation, with the deneddylase activity residing in CSN5. Neddylation/deneddylation is a key mechanism for controlling the activity of cullin RING ligases (CRLs). Attachment of NEDD8 (neddylation) renders the CRL able to ubiquitinate substrates to direct them to the proteasome for degradation. One of the major actions of the CSN is to remove NEDD8 (deneddylate) and inactivate CRLs. The deneddylated form of CRLs prevents the ubiquitination and proteasomal degradation of targeted substrates. The substrate recognition receptor of the CRL allows selective targeting of substrates. Thus by controlling CRLs the CSN may provide selective control of protein turnover in vascular smooth muscle (VSM). Key target substrates that may be under CSN control and participate in VSM proliferation include the cyclin dependent kinase inhibitors, p27 and p21. The CSN may also be involved in the control of vascular contraction by modulating the ubiquitination of substrates such as the voltage gated calcium channel (VGCC), potassium channel, IP3 receptor, RhoA, soluble guanylate cyclase (sGC), super oxide dismutase (SOD1), peroxiredoxin, or IkB. In the endothelium the CSN may control ubiquitination of endothelial nitric oxide synthase (eNOS), calcineurin, cyclooxygenase or GTP cyclohydrolase 1 (GTPCH1) to modulate the production and release of endothelium dependent vasodilators or constrictors.

Similar articles

Cited by

References

    1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL, Mabweijano J, MacIntyre MF, Mallinger L, March L, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGrath J, Mensah GA, Merriman TR, Michaud C, Miller M, Miller TR, Mock C, Mocumbi AO, Mokdad AA, Moran A, Mulholland K, Nair MN, Naldi L, Narayan KM, Nasseri K, Norman P, O’Donnell M, Omer SB, Ortblad K, Osborne R, Ozgediz D, Pahari B, Pandian JD, Rivero AP, Padilla RP, Perez-Ruiz F, Perico N, Phillips D, Pierce K, Pope CA 3rd, Porrini E, Pourmalek F, Raju M, Ranganathan D, Rehm JT, Rein DB, Remuzzi G, Rivara FP, Roberts T, De Leon FR, Rosenfeld LC, Rushton L, Sacco RL, Salomon JA, Sampson U, Sanman E, Schwebel DC, Segui-Gomez M, Shepard DS, Singh D, Singleton J, Sliwa K, Smith E, Steer A, Taylor JA, Thomas B, Tleyjeh IM, Towbin JA, Truelsen T, Undurraga EA, Venketasubramanian N, Vijayakumar L, Vos T, Wagner GR, Wang M, Wang W, Watt K, Weinstock MA, Weintraub R, Wilkinson JD, Woolf AD, Wulf S, Yeh PH, Yip P, Zabetian A, Zheng ZJ, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128. - PMC - PubMed
    1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres J, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB. Heart Disease and Stroke Statistics-2015 Update: A Report From the American Heart Association. Circulation. 2015;131:e29–322. - PubMed
    1. Cutler JA, Sorlie PD, Wolz M, Thom T, Fields LE, Roccella EJ. Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988-1994 and 1999-2004. Hypertension. 2008;52:818–827. - PubMed
    1. Hajjar I, Kotchen JM, Kotchen TA. Hypertension: trends in prevalence, incidence, and control. Annu Rev Public Health. 2006;27:465–490. - PubMed
    1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics--2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–e292. - PMC - PubMed

LinkOut - more resources